000200996 001__ 200996
000200996 005__ 20240619091953.0
000200996 0247_ $$2doi$$a10.1021/acs.langmuir.5b01081
000200996 0247_ $$2ISSN$$a0743-7463
000200996 0247_ $$2ISSN$$a1520-5827
000200996 0247_ $$2WOS$$aWOS:000355382300012
000200996 0247_ $$2altmetric$$aaltmetric:4020278
000200996 0247_ $$2pmid$$apmid:25938931
000200996 037__ $$aFZJ-2015-03315
000200996 041__ $$aEnglish
000200996 082__ $$a670
000200996 1001_ $$0P:(DE-HGF)0$$aGonzález-Gaitano, Gustavo$$b0$$eCorresponding Author
000200996 245__ $$aSelective Tuning of the Self-Assembly and Gelation of a Hydrophilic Poloxamine by Cyclodextrins
000200996 260__ $$aWashington, DC$$bACS Publ.$$c2015
000200996 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1437119805_6001
000200996 3367_ $$2DataCite$$aOutput Types/Journal article
000200996 3367_ $$00$$2EndNote$$aJournal Article
000200996 3367_ $$2BibTeX$$aARTICLE
000200996 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200996 3367_ $$2DRIVER$$aarticle
000200996 520__ $$aComplexes formed between cyclodextrins (CDs) and polymers - pseudopolyrotaxanes (PPRs) - are the starting point of a multitude of supramolecular structures, which are proposed for a wide range of biomedical and technological applications. In this work, we investigate the complexation of a range of cyclodextrins with Tetronic T1307, a four-arm block copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with a pH-responsive central ethylene diamine spacer, and its impact on micellization and the sol–gel transition. At low concentrations, small-angle neutron scattering (SANS) combined with dynamic light scattering (DLS) measurements show the presence of spherical micelles with a highly hydrated shell and a dehydrated core. Increasing the temperature leads to more compact micelles and larger aggregation numbers, whereas acidic conditions induce a shrinking of the micelles, with fewer unimers per micelle and a more hydrated corona. At high concentrations, T1307 undergoes a sol–gel transition, which is suppressed at pH below the pKa,1 (4.6). SANS data analysis reveals that the gels result from a random packing of the micelles, which have an increasing aggregation number and increasingly dehydrated shell and hydrated core with the temperature. Native CDs (α, β, γ-CD) can complex T1307, resulting in the precipitation of a PPR. Instead, modified CDs compete with micellization to an extent that is critically dependent on the nature of the substitution. 1H and ROESY NMR combined with SANS demonstrate that dimethylated β-CD can thread onto the polymer, preferentially binding to the PO units, thus hindering self-aggregation by solubilizing the hydrophobic block. The various CDs are able to modulate the onset of gelation and the extent of the gel phase, and the effect correlates with the ability of the CDs to disrupt the micelles, with the exception of a sulfated sodium salt of β-CD, which, while not affecting the CMT, is able to fully suppress the gel phase
000200996 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000200996 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000200996 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200996 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000200996 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x2
000200996 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000200996 65017 $$0V:(DE-MLZ)GC-140$$2V:(DE-HGF)$$aSoft Matter, Macromolecules, Complex fluids, Biophysics $$x0
000200996 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000200996 7001_ $$0P:(DE-HGF)0$$ada Silva, Marcelo A.$$b1
000200996 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b2$$ufzj
000200996 7001_ $$0P:(DE-HGF)0$$aDreiss, Cécile A.$$b3
000200996 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.5b01081$$gVol. 31, no. 20, p. 5645 - 5655$$n20$$p5645 - 5655$$tLangmuir$$v31$$x1520-5827$$y2015
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.pdf$$yRestricted
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.gif?subformat=icon$$xicon$$yRestricted
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.jpg?subformat=icon-180$$xicon-180$$yRestricted
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.jpg?subformat=icon-640$$xicon-640$$yRestricted
000200996 8564_ $$uhttps://juser.fz-juelich.de/record/200996/files/acs.langmuir.5b01081.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200996 909CO $$ooai:juser.fz-juelich.de:200996$$pVDB$$pVDB:MLZ
000200996 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200996 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x0
000200996 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000200996 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000200996 9141_ $$y2015
000200996 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200996 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200996 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200996 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200996 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200996 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200996 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200996 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000200996 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200996 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000200996 920__ $$lyes
000200996 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000200996 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x1
000200996 980__ $$ajournal
000200996 980__ $$aVDB
000200996 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000200996 980__ $$aI:(DE-Juel1)ICS-1-20110106
000200996 980__ $$aUNRESTRICTED
000200996 981__ $$aI:(DE-Juel1)IBI-8-20200312
000200996 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000200996 981__ $$aI:(DE-Juel1)ICS-1-20110106