
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
3
4

Initial nucleon structure results with chiral quarks at

the physical point

S. Syritsyn∗ a, T. Blum a,b, M. Engelhardt c, J. Green d , T. Izubuchi a, C. Jung a,

S. Krieg e, M. Lin f , S. Meinel a,g, J. Negele h, S. Ohta i, j,a, A. Pochinsky h,

E. Shintani a,k (RBC and LHP collaborations)
a RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973, USA
b Physics Department, University of Connecticut, Storrs, CT 06269, USA
c Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA
d Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
e Bergische Universität Wuppertal, D-42119 Wuppertal, Germany and

IAS, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
f Computational Science Center, Brookhaven National Laboratory, Upton, NY 11973, USA
g Department of Physics, University of Arizona, Tucson, AZ 85721, USA
h Massachusetts Institute of Technology, Cambridge, MA 02139, USA
i Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 3050801, Japan
j Department of Particle and Nuclear Physics, SOKENDAI, Hayama, Kanagawa, 2400193, Japan
k PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes

Gutenberg-Universität Mainz, D-55099 Mainz, Germany

E-mail: ssyritsyn@quark.phy.bnl.gov

We report initial nucleon structure results computed on lattices with 2+1 dynamical Möbius do-

main wall fermions at the physical point generated by the RBC and UKQCD collaborations. At

this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon

vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum

fraction. From currently available statistics, we estimate the stochastic accuracy of the determi-

nation of gA and 〈x〉u−d to be around 10%, and we expect to reduce that to 5% within the next

year. To reduce the computational cost of our calculations, we extensively use acceleration tech-

niques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method

for choosing optimal AMA parameters.
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1. Introduction

Exploring nucleon structure in lattice QCD at the physical point became possible in the recent

few years, and many collaborations have started calculations that no longer require chiral extrapo-

lations. This is a major step forward because it eliminates one of the major sources of systematic

uncertainty that made difficult validating methods and achieving high precision in lattice QCD.

Nucleon structure calculations at the physical point are extremely demanding. This usually

justifies choosing an affordable fermion action such as Wilson [1] or twisted mass [2], even though

they do not respect chiral symmetry of QCD. However, a number of nuclear and high energy

physics problems, e.g., proton decay and neutron oscillations, require chiral symmetry for com-

puting corresponding nucleon matrix elements, and one has to use substantially more expensive

domain wall or overlap fermion actions. Studying nucleon structure, the nucleon vector and ax-

ial vector form factors in particular, with these actions is therefore a necessary stepping stone for

developing methods to facilitate calculations that will preserve chiral symmetry.

In this report, we show our initial results from computing nucleon structure directly at the

physical point using gauge configurations generated with the N f = 2+ 1 dynamical domain wall

fermion action [3]. We use various improvement techniques, which we discuss in Sec. 2, and

present initial, low-statistics results for the nucleon form factors, axial charge and quark momentum

fraction in Sec. 3.

2. Methodology

For this initial study with chiral quarks at the physical point, we use one ensemble of gauge

configurations generated by the RBC/UKQCD collaborations with the inverse lattice spacing a−1 =

1.730(4) GeV and the pion mass mπ = 139.2(4) MeV [3]. This ensemble is generated with the

Iwasaki gauge action and the Möbius Domain Wall fermion (MDWF) action for N f = 2+1 quarks.

The Möbius formulation [4] of chiral fermions allows one to shorten the fifth (“flavor”) dimension

of the traditional domain wall fermion action without increasing the quark residual mass. The

lattice size is 483 × 96, corresponding to mπL = 3.86, which should be sufficient to substantially

suppress finite volume effects, as known from the meson sector.

The main challenge in computing hadron observables with domain wall-like actions is the

cost of calculating light quark propagators, especially at the physical point. We use two methods

to accelerate our calculations: acceleration of the conjugate gradient algorithm (CG) with low-

eigenmode deflation and improved stochastic sampling, or All-mode Averaging (AMA) [5]. The

idea behind AMA is to compute cheap approximate samples with large statistics and then correct

for any potential bias by comparing a subset of approximate samples to exact solutions,

〈O〉imp = 〈Oapprox〉Napprox
+ 〈∆O〉Nexact

, ∆O = Oexact −Oapprox , (2.1)

(

δOimp

)2
=

1

Napprox

Var
{

Oapprox

}

+
1

Nexact

Var
{

∆O
}

(2.2)

One usually takes a large number of approximate samples at different locations on the same lattice

configuration, exploiting the translational invariance of the QCD ensemble average, while for ∆O

smaller statistics is sufficient to estimate the difference arising from the approximation. We obtain
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Figure 1: Deflation eigenvalues for differ-

ent domain wall operators, scaled with vol-

ume and lattice cutoff (courtesy of T. Blum,

T. Izubuchi, and E. Shintani). The green

line corresponds to the current work.
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Figure 2: Figure of merit for AMA optimization (see

Eq. 2.3) of the nucleon axial charge (left) and charge ra-

dius (right) three-point function plateaus. The circles, dia-

monds, squares, “x” and “+” correspond to Napprox/Nexact =

4,8,16,32,64, respectively, and the solid line corresponds

to exact-only samples (no AMA).

approximate samples using quark propagators computed with truncated CG. Low-eigenmode de-

flation is applied in computing both exact and approximate samples. In addition to accelerating the

CG convergence for the exact samples, deflation helps to reduce the bias of approximate samples

and make them cheaper by substantially reducing the number nCG of CG iterations required for

good approximation.

We compute NEV = 500 lowest eigenmodes for deflation using ARPACK with n= 200 Cheby-

shev polynomial acceleration. With the range of deflated eigenvalues λmax/λmin ≈ 102 (see Fig. 1),

the convergence rate of CG is accelerated by a factor of ≈ 10, which was confirmed by direct tests.

The number of eigenvalues we can use is limited by the total amount of memory available to a

single job. In fact, using (3 . . .4)× more eigenvectors, which would span the spectrum between the

light and strange quark masses, is expected to improve the AMA efficiency significantly [6].

In order to apply the AMA effectively, one has to choose the optimal approximation (number

of truncated CG steps nCG) and ratio of exact and approximate samples Napprox/Nexact. Such opti-

mization should take into account the change in the precision of the approximate samples, as well

as their total cost. We use the product of their stochastic variance and the cost required for their

computation, normalized by the cost of a single exact sample, as the figure of merit:

Costimp ·Var
{

Oimp

}

∼
(

1+
n

approx
CG

nexact
CG

·
Napprox

Nexact

)

·
(

Var
{

∆O
}

+
Nexact

Napprox

Var
{

Oapprox

}

)

. (2.3)

Estimates of this FOM for varying combinations of nCG and Napprox/Nexact are shown in Fig. 2 for

the nucleon three-point functions yielding the axial charge and the charge radius1. From that, we

derive optimal Napprox/Nexact = 32 and n
approx
CG = 400, which reduce stochastic variance by a factor

of ×(2.5 . . .3).

Excited states in lattice nucleon matrix elements are a major source of systematic error, and one

has to study the dependence of nucleon-operator three-point functions on the separation between

1More precisely, the matrix element of the vector current with the minimal non-zero momentum transfer.
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Figure 3: Plateaus for nucleon effective energies

for the lowest momenta.
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Figure 4: Plateaus of quark momentum fraction

〈x〉u−d . The renormalization is taken from Ref. [9].

sources and sinks T = tsink−tsource. For this initial study, we select T/a= 8,9,10,12 corresponding

to 0.91, 1.03, 1.14, and 1.37 fm. Since the statistics are not sufficient for reliable multi-exponential

fits, we resort to simpler methods such as summation (e.g., Ref. [7]) to estimate and reduce excited-

state contributions at this stage.

3. Initial Results

We have analyzed 20 gauge configurations separated by 80 MD steps to minimize autocorrela-

tions; these configurations are spread evenly over the entire available ensemble except for the first

640 MD steps necessary for thermalization. We compute one exact and 32 approximate samples per

configuration. At this initial stage, we focus on nucleon structure “benchmark quantities”: the nu-

cleon axial charge, Dirac and Pauli isovector radii, isovector magnetic moment and quark momen-

tum fraction. As shown in Fig. 3, the effective energies Eeff(t) = log
(

C2pt(t)/C2pt(t +1)
)

become

too noisy after t = 11, indicating that the source-sink separation T/a = 12 is the largest one that

can be analyzed with the current statistics. In order to extract nucleon form factors from nucleon

matrix elements we use standard methods that can be found elsewhere (e.g., see Refs. [8, 9, 1, 10]).

In Figs. 4 and 5 we show quark momentum fraction, vector charge, and axial charge plateaus,

their central plateau average values and the values obtained with the summation method [7] (ap-

plied to data with all the four separations T ). Although we have not calculated renormalization

factors for the momentum fraction for this ensemble, we can use the factors from earlier calcu-

lations with Domain Wall fermions with heavier pion masses and the identical lattice spacing [9]

to convert bare quantities to the MS scheme at 2 GeV. The nucleon isovector quark momentum

fraction is known to have substantial contributions from excited states (see, e.g. [1, 11, 12]), and

lattice QCD results typically overestimate experiment by 30-60%. Our initial values for shorter

separations also significantly deviate from experiment, while the longest separation T/a = 12 has

insufficient precision to investigate whether it is excited states that cause this systematic effect.

The “summation” method yields a value that is consistent with experiment by virtue of its larger

statistical uncertainty.
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Figure 5: Plateaus of vector (left) and axial (right) charges of the nucleon. The leftmost point represents the

“summation” value.

The vector charge plateaus agree for all separations, and we use the central value at T =

8a as an approximate renormalization factor for the vector and axial-vector current operators,

ZA = ZV =
(

gV

∣

∣

T=8a

)−1
. The value of the axial charge gA is below the experimental value gA =

1.2723(23) [13]. We note that the deviation from the experiment is (2 . . .3)σ , and it can still be

attributed to a statistical fluctuation. In addition, the plateaus indicate significant excited state con-

tamination. Although the value from the summation method (Fig. 5(right)) agrees with experiment,

the central plateau values move away from it with increasing separation T , a behavior that was also

observed in other studies close to the physical point [1]. Additional statistics and careful analysis

of excited states are required to understand this phenomenon.

The statistics are not yet sufficient to analyze the form factors to extract the radii reliably,

especially with larger separations. Since no chiral extrapolation is needed, it is more informative

to compare the form factors directly to experiment. In Figure 6 we show the isovector Dirac and

Pauli form factors in the region of small momentum transfer 0 ≤ Q2 . 0.6 GeV2, together with

phenomenological fits of experimental data [14]. The Dirac form factor at small separations T/a =

8,9,10 deviates from the experiment, while the values at the largest separation T/a = 12, as well as

the “summation” value, agree within statistics. This indicates that the deviations are likely caused

by excited state contributions, in agreement with earlier findings that the isovector Dirac radius is

subject to large excited state effects [1], although more statistics are necessary to make a certain

conclusion. The isovector Pauli form factor is in better agreement with phenomenology, although

its values are even less precise and the “summation” method yields nearly 100% uncertainty.

The form factors of the axial-vector current are shown in Fig. 7. The axial form factor GA(Q
2)

is interesting for two reasons. First, its forward value GA(0) = gA is the axial charge that has been

discussed above; second, its Q2-dependence determines the axial radius of the nucleon and plays an

important role in the physics of neutrino scattering and meson production. The axial radius, defined

similarly to the charge radius, is typically underestimated in lattice calculations by a factor of 2 [15].

From Fig. 7(left) we see that our initial results follow the same pattern: the slope of the axial form

factor is substantially smaller than experimental fits. It is not clear yet whether increasing statistics

with larger source-sink separations T/a ≥ 10 will indicate excited state contamination and suggest

5
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Figure 6: Vector form factors of the nucleon: isovector Dirac (left) and Pauli (right).
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Figure 7: Axial vector form factors of the nucleon: axial (left) and induced pseudoscalar (right).

a solution to this problem; however, comparing T/a = 8,9 and 10 shows very little dependence on

the source-sink separation T/a.

The induced pseudoscalar form factor GP(Q
2) (Fig. 7(right)) is relevant for low-energy QCD

dynamics. Its value is measured in meson production off nucleons and nuclei, as well as in muon

capture experiments [16]. Its low-momentum behavior is believed to be governed by the pion pole

∼ (Q2+m2
π)

−1 and therefore is very sensitive to the pion mass. Calculations with the physical pion

mass are especially important for this form factor. Our initial results indicate that there are sub-

stantial contributions from excited states, and as the source-sink separation increases, we observe

better agreement with the phenomenology.

4. Discussion

Stochastic uncertainty of the initial results that we report indicates that substantially more

statistics will be needed to compute lattice QCD “benchmark” quantities with required preci-

sion. Currently, we plan to quadruple statistics. Since, for example, our present stochastic un-

certainties for the axial charge and the quark momentum fraction with separation T = 1.14 fm
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are
(

δgA

)

T/a=10
≈ 10% and

(

δ 〈x〉u−d

)

T/a=10
≈ 11%, this will reduce their uncertainties down to

≈ 5% and make reliable analysis of excited states possible.

Although computing resources increase steadily, and the calculation is fully feasible with the

current methodology, we are actively studying approaches to both reduce the cost of computing

approximate samples and to make them more precise. An obvious improvement is to simply use

more eigenvectors in the CG deflation; however, this approach is limited by the size of the 5D

eigenvectors (≈ 5.6 TiB per configuration). Other possible directions are using approximations to

the Möbius fermion operator with shorter L5, multigrid methods, and hierarchical deflation [17].

A combination of the improved computing methods and increasing computing resources will

allow us to accomplish a reliable calculation of nucleon structure with chirally symmetric action in

the near future.
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