000201026 001__ 201026 000201026 005__ 20210129215608.0 000201026 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2011.11.009 000201026 0247_ $$2ISSN$$a0955-2219 000201026 0247_ $$2ISSN$$a1873-619X 000201026 0247_ $$2WOS$$aWOS:000299977500018 000201026 037__ $$aFZJ-2015-03336 000201026 082__ $$a660 000201026 1001_ $$0P:(DE-HGF)0$$aChiang, Chen-Su$$b0 000201026 245__ $$aEffect of TiO2 doped Ni electrodes on the dielectric properties and microstructures of (Ba$_{0.96}$Ca$_{0.04}$)(Ti$_{0.85}$Zr$_{0.15}$)O$_{3}$ multilayer ceramic capacitors 000201026 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012 000201026 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433923962_12154 000201026 3367_ $$2DataCite$$aOutput Types/Journal article 000201026 3367_ $$00$$2EndNote$$aJournal Article 000201026 3367_ $$2BibTeX$$aARTICLE 000201026 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201026 3367_ $$2DRIVER$$aarticle 000201026 520__ $$aThe effects of TiO2-doped Ni electrodes on the microstructures and dielectric properties of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 multilayer ceramic capacitors (MLCCs) have been investigated. Nickel paste with a TiO2 dopant was used as internal electrodes in MLCCs based on (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 (BCTZ) ceramic with copper end-termination. The microstructures and defects were analysed by microstructural techniques (SEM/HRTEM) and energy-dispersive spectroscopy (EDS). The continuity of the electrode of the MLCC was measured using a scanning electron microscope, which showed that the continuity of the electrode for the MLCC with a TiO2-doped Ni electrode was approximately 90%. However, continuity of the electrode for a conventional MLCC was below 80%. The continuity of the TiO2-doped Ni electrode showed significant improvement in the MLCC, which was due to no reaction between Ni and BCTZ. 000201026 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0 000201026 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201026 7001_ $$0P:(DE-HGF)0$$aLee, Ying-Chieh$$b1 000201026 7001_ $$0P:(DE-HGF)0$$aShiao, Fu-Thang$$b2 000201026 7001_ $$0P:(DE-HGF)0$$aLee, Wen-Hsi$$b3$$eCorresponding Author 000201026 7001_ $$0P:(DE-Juel1)130705$$aHennings, Detlev$$b4 000201026 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2011.11.009$$gVol. 32, no. 4, p. 865 - 873$$n4$$p865 - 873$$tJournal of the European Ceramic Society$$v32$$x0955-2219$$y2012 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.pdf$$yRestricted 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.gif?subformat=icon$$xicon$$yRestricted 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000201026 8564_ $$uhttps://juser.fz-juelich.de/record/201026/files/1-s2.0-S0955221911005851-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201026 909CO $$ooai:juser.fz-juelich.de:201026$$pVDB 000201026 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130705$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000201026 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000201026 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0 000201026 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201026 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201026 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201026 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201026 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201026 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201026 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000201026 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000201026 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000201026 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000201026 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000201026 980__ $$ajournal 000201026 980__ $$aVDB 000201026 980__ $$aI:(DE-Juel1)PGI-7-20110106 000201026 980__ $$aUNRESTRICTED