000201028 001__ 201028
000201028 005__ 20210129215608.0
000201028 0247_ $$2doi$$a10.1021/ja102754n
000201028 0247_ $$2ISSN$$a0002-7863
000201028 0247_ $$2ISSN$$a1520-5126
000201028 0247_ $$2WOS$$aWOS:000278717700068
000201028 037__ $$aFZJ-2015-03338
000201028 041__ $$aEnglish
000201028 082__ $$a540
000201028 1001_ $$0P:(DE-Juel1)128776$$aLi, Zhihai$$b0
000201028 245__ $$aFrom Redox Gating to Quantized Charging
000201028 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2010
000201028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433924213_12154
000201028 3367_ $$2DataCite$$aOutput Types/Journal article
000201028 3367_ $$00$$2EndNote$$aJournal Article
000201028 3367_ $$2BibTeX$$aARTICLE
000201028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201028 3367_ $$2DRIVER$$aarticle
000201028 520__ $$aElectron transport characteristics were studied in redox molecule-modified tunneling junctions Au(111)|6-thiohexanoylferrocene (Fc6)|solution gap|Au STM tip in the absence and in the presence of gold nanoclusters employing an electrochemical STM setup. We observed transistor- and diode-like current−voltage responses accounted for by the redox process at the ferrocene moiety. We demonstrate that the reorganization energy of the redox site decreases with decreasing gap size. As a unique new feature, we discovered the formation of uniform (size ∼2.4 nm) gold nanoparticles, upon multiple oxidation/reduction cycles of the Fc6 adlayer. The immobilized nanoparticles modify the electron transport response of the Fc6 tunneling junctions dramatically. On top of embedded single nanoparticles we observed single-electron Coulomb charging signatures with up to seven narrow and equally spaced energy states upon electrochemical gating. Our results demonstrate the power of the electrochemical approach in molecular electronics and offer a new perspective toward two-state and multistate electronic switching in condensed media at room temperature.
000201028 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201028 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201028 7001_ $$0P:(DE-HGF)0$$aLiu, Yaqing$$b1
000201028 7001_ $$0P:(DE-HGF)0$$aMertens, Stijn F. L.$$b2
000201028 7001_ $$0P:(DE-HGF)0$$aPobelov, Ilya V.$$b3
000201028 7001_ $$0P:(DE-HGF)0$$aWandlowski, Thomas$$b4$$eCorresponding Author
000201028 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja102754n$$gVol. 132, no. 23, p. 8187 - 8193$$n23$$p8187 - 8193$$tJournal of the American Chemical Society$$v132$$x1520-5126$$y2010
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.pdf$$yRestricted
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.gif?subformat=icon$$xicon$$yRestricted
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201028 909CO $$ooai:juser.fz-juelich.de:201028$$pVDB
000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128776$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201028 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201028 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201028 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201028 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201028 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201028 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201028 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201028 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201028 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201028 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201028 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000201028 920__ $$lyes
000201028 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201028 980__ $$ajournal
000201028 980__ $$aVDB
000201028 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201028 980__ $$aUNRESTRICTED