000201028 001__ 201028 000201028 005__ 20210129215608.0 000201028 0247_ $$2doi$$a10.1021/ja102754n 000201028 0247_ $$2ISSN$$a0002-7863 000201028 0247_ $$2ISSN$$a1520-5126 000201028 0247_ $$2WOS$$aWOS:000278717700068 000201028 037__ $$aFZJ-2015-03338 000201028 041__ $$aEnglish 000201028 082__ $$a540 000201028 1001_ $$0P:(DE-Juel1)128776$$aLi, Zhihai$$b0 000201028 245__ $$aFrom Redox Gating to Quantized Charging 000201028 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2010 000201028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433924213_12154 000201028 3367_ $$2DataCite$$aOutput Types/Journal article 000201028 3367_ $$00$$2EndNote$$aJournal Article 000201028 3367_ $$2BibTeX$$aARTICLE 000201028 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201028 3367_ $$2DRIVER$$aarticle 000201028 520__ $$aElectron transport characteristics were studied in redox molecule-modified tunneling junctions Au(111)|6-thiohexanoylferrocene (Fc6)|solution gap|Au STM tip in the absence and in the presence of gold nanoclusters employing an electrochemical STM setup. We observed transistor- and diode-like current−voltage responses accounted for by the redox process at the ferrocene moiety. We demonstrate that the reorganization energy of the redox site decreases with decreasing gap size. As a unique new feature, we discovered the formation of uniform (size ∼2.4 nm) gold nanoparticles, upon multiple oxidation/reduction cycles of the Fc6 adlayer. The immobilized nanoparticles modify the electron transport response of the Fc6 tunneling junctions dramatically. On top of embedded single nanoparticles we observed single-electron Coulomb charging signatures with up to seven narrow and equally spaced energy states upon electrochemical gating. Our results demonstrate the power of the electrochemical approach in molecular electronics and offer a new perspective toward two-state and multistate electronic switching in condensed media at room temperature. 000201028 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0 000201028 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201028 7001_ $$0P:(DE-HGF)0$$aLiu, Yaqing$$b1 000201028 7001_ $$0P:(DE-HGF)0$$aMertens, Stijn F. L.$$b2 000201028 7001_ $$0P:(DE-HGF)0$$aPobelov, Ilya V.$$b3 000201028 7001_ $$0P:(DE-HGF)0$$aWandlowski, Thomas$$b4$$eCorresponding Author 000201028 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja102754n$$gVol. 132, no. 23, p. 8187 - 8193$$n23$$p8187 - 8193$$tJournal of the American Chemical Society$$v132$$x1520-5126$$y2010 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.pdf$$yRestricted 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.gif?subformat=icon$$xicon$$yRestricted 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-180$$xicon-180$$yRestricted 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.jpg?subformat=icon-640$$xicon-640$$yRestricted 000201028 8564_ $$uhttps://juser.fz-juelich.de/record/201028/files/ja102754n.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201028 909CO $$ooai:juser.fz-juelich.de:201028$$pVDB 000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128776$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000201028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000201028 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000201028 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0 000201028 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201028 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201028 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201028 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000201028 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000201028 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000201028 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000201028 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000201028 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10 000201028 920__ $$lyes 000201028 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0 000201028 980__ $$ajournal 000201028 980__ $$aVDB 000201028 980__ $$aI:(DE-Juel1)PGI-3-20110106 000201028 980__ $$aUNRESTRICTED