000201029 001__ 201029
000201029 005__ 20210129215609.0
000201029 0247_ $$2doi$$a10.1016/j.susc.2009.11.034
000201029 0247_ $$2ISSN$$a0039-6028
000201029 0247_ $$2ISSN$$a0167-2584
000201029 0247_ $$2ISSN$$a1878-1047
000201029 0247_ $$2ISSN$$a1879-2758
000201029 0247_ $$2WOS$$aWOS:000274979000021
000201029 037__ $$aFZJ-2015-03339
000201029 082__ $$a540
000201029 1001_ $$0P:(DE-Juel1)128768$$aIbach, Harald$$b0$$eCorresponding Author$$ufzj
000201029 245__ $$aVibration spectroscopy of water on stepped gold surfaces
000201029 260__ $$aAmsterdam$$bElsevier$$c2010
000201029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433924430_12150
000201029 3367_ $$2DataCite$$aOutput Types/Journal article
000201029 3367_ $$00$$2EndNote$$aJournal Article
000201029 3367_ $$2BibTeX$$aARTICLE
000201029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201029 3367_ $$2DRIVER$$aarticle
000201029 520__ $$aThe vibration spectrum of H2O (ice) adsorbed at low temperatures on Au(1 0 0), Au(1 11 1), and Au(1 1 5) is studied using electron energy loss spectroscopy. On the Au(1 0 0) surface, the spectra show the presence of the typical H-bonded network of water molecules for all coverages from the submonolayer into the multilayer range. The absence of a non-H-bonded OH-stretching mode is indicative for the “H-down bilayer”. On stepped surfaces, on the other hand, a considerable fraction of the H-atoms remains in the non-H-bonded state; surprisingly even in the multilayer range, and even after annealing. The fraction of non-H-bonded hydrogen atoms scales with the step density. Spectral features of water adsorbed at step-sites are isolated after annealing a surface exposed to small doses of H2O. The results are discussed in the context of recent theoretical studies as well as in conceivable relation to the experimentally found reduction of the Helmholtz-capacitance on stepped Au(1 1 n) electrodes.
000201029 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201029 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201029 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2009.11.034$$gVol. 604, no. 3-4, p. 377 - 385$$n3-4$$p377 - 385$$tSurface science$$v604$$x0039-6028$$y2010
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.pdf$$yRestricted
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.gif?subformat=icon$$xicon$$yRestricted
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201029 8564_ $$uhttps://juser.fz-juelich.de/record/201029/files/1-s2.0-S0039602809007602-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201029 909CO $$ooai:juser.fz-juelich.de:201029$$pVDB
000201029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128768$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201029 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201029 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201029 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201029 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201029 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201029 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201029 920__ $$lyes
000201029 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201029 980__ $$ajournal
000201029 980__ $$aVDB
000201029 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201029 980__ $$aUNRESTRICTED