000201033 001__ 201033
000201033 005__ 20210129215610.0
000201033 0247_ $$2doi$$a10.1103/PhysRevLett.110.076101
000201033 0247_ $$2ISSN$$a0031-9007
000201033 0247_ $$2ISSN$$a1079-7114
000201033 0247_ $$2Handle$$a2128/8727
000201033 0247_ $$2WOS$$aWOS:000314995400005
000201033 037__ $$aFZJ-2015-03343
000201033 041__ $$aEnglish
000201033 082__ $$a550
000201033 1001_ $$0P:(DE-Juel1)156589$$aSchwarz, Daniel$$b0$$eCorresponding Author
000201033 245__ $$aGrowth Anomalies in Supramolecular Networks: 4,4 '-Biphenyldicarboxylic Acid on Cu(001)
000201033 260__ $$aCollege Park, Md.$$bAPS$$c2013
000201033 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433914069_12150
000201033 3367_ $$2DataCite$$aOutput Types/Journal article
000201033 3367_ $$00$$2EndNote$$aJournal Article
000201033 3367_ $$2BibTeX$$aARTICLE
000201033 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201033 3367_ $$2DRIVER$$aarticle
000201033 520__ $$aWe have used low energy electron microscopy to demonstrate how the interaction of 4,4′-biphenyldicarboxylic acid (BDA) molecules with (steps on) the Cu(001) surface determines the structure of supramolecular BDA networks on a mesoscopic length scale. Our in situ real time observations reveal that steps are permeable to individual molecules but that the change in crystal registry between different layers of the Cu substrate causes them to be completely impermeable to condensed BDA domains. The resulting growth instabilities determine the evolution of the domain shape and include a novel Mullins-Sekerka-type growth instability that is characterized by high growth rates along, instead of perpendicular to, the Cu steps. This growth instability is responsible for the majority of residual defects in the BDA networks.
000201033 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201033 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201033 7001_ $$0P:(DE-HGF)0$$avan Gastel, R.$$b1
000201033 7001_ $$0P:(DE-HGF)0$$aZandvliet, HJW$$b2
000201033 7001_ $$0P:(DE-HGF)0$$aPoelsema, B.$$b3
000201033 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.110.076101$$gVol. 110, no. 7, p. 076101$$n7$$p076101$$tPhysical review letters$$v110$$x0031-9007$$y2013
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.pdf$$yOpenAccess
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.gif?subformat=icon$$xicon$$yOpenAccess
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201033 8564_ $$uhttps://juser.fz-juelich.de/record/201033/files/PhysRevLett.110.076101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201033 909CO $$ooai:juser.fz-juelich.de:201033$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156589$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201033 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201033 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201033 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000201033 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201033 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201033 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201033 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201033 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201033 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201033 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201033 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201033 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201033 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201033 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201033 920__ $$lyes
000201033 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201033 980__ $$ajournal
000201033 980__ $$aVDB
000201033 980__ $$aFullTexts
000201033 980__ $$aUNRESTRICTED
000201033 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201033 9801_ $$aFullTexts