000201035 001__ 201035
000201035 005__ 20210129215610.0
000201035 0247_ $$2doi$$a10.1039/c3cp00049d
000201035 0247_ $$2ISSN$$a1463-9076
000201035 0247_ $$2ISSN$$a1463-9084
000201035 0247_ $$2WOS$$aWOS:000316007900020
000201035 037__ $$aFZJ-2015-03345
000201035 082__ $$a540
000201035 1001_ $$0P:(DE-Juel1)156589$$aSchwarz, Daniel$$b0$$eCorresponding Author
000201035 245__ $$aFormation and decay of a compressed phase of 4,4′-biphenyldicarboxylic acid on Cu(001)
000201035 260__ $$aCambridge$$bRSC Publ.$$c2013
000201035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433924769_12148
000201035 3367_ $$2DataCite$$aOutput Types/Journal article
000201035 3367_ $$00$$2EndNote$$aJournal Article
000201035 3367_ $$2BibTeX$$aARTICLE
000201035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201035 3367_ $$2DRIVER$$aarticle
000201035 520__ $$aThe molecular arrangement of 4,4′-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied at high coverage and relatively high temperature ([similar]400 K) using Low Energy Electron Microscopy, LEEM, and selected area diffraction, μLEED. Next to the previously reported c(8 × 8) structure, we also observe a compressed phase with a Image ID:c3cp00049d-t1.gif superstructure in matrix notation. All four equivalent (rotational and mirror) domains are equally populated. Both the c(8 × 8) and the compressed phase are confined to the first layer and the latter has a 14% higher density compared to the c(8 × 8) phase. Remarkably, this compressed phase is stable only during deposition and decays after interruption of the deposition. Apparently, the density of physisorbed admolecules on top of the c(8 × 8) layer has to be above a relevant threshold to allow the formation of the compressed phase.
000201035 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201035 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201035 7001_ $$0P:(DE-HGF)0$$avan Gastel, Raoul$$b1
000201035 7001_ $$0P:(DE-HGF)0$$aZandvliet, Harold J. W.$$b2
000201035 7001_ $$0P:(DE-HGF)0$$aPoelsema, Bene$$b3
000201035 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/c3cp00049d$$gVol. 15, no. 14, p. 5007 -$$n14$$p 5007-5016$$tPhysical chemistry, chemical physics$$v15$$x1463-9084$$y2013
000201035 909CO $$ooai:juser.fz-juelich.de:201035$$pVDB
000201035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156589$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201035 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201035 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201035 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201035 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201035 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201035 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201035 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201035 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201035 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201035 920__ $$lyes
000201035 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201035 980__ $$ajournal
000201035 980__ $$aVDB
000201035 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201035 980__ $$aUNRESTRICTED