000201042 001__ 201042
000201042 005__ 20210129215612.0
000201042 0247_ $$2doi$$a10.3762/bjnano.5.22
000201042 0247_ $$2WOS$$aWOS:000332779500001
000201042 0247_ $$2Handle$$a2128/9081
000201042 037__ $$aFZJ-2015-03352
000201042 082__ $$a620
000201042 1001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b0$$eCorresponding Author$$ufzj
000201042 245__ $$aThe role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope
000201042 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2014
000201042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433926219_12155
000201042 3367_ $$2DataCite$$aOutput Types/Journal article
000201042 3367_ $$00$$2EndNote$$aJournal Article
000201042 3367_ $$2BibTeX$$aARTICLE
000201042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201042 3367_ $$2DRIVER$$aarticle
000201042 520__ $$aScanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface.
000201042 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201042 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201042 7001_ $$0P:(DE-Juel1)142140$$aFournier, Norman$$b1
000201042 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b2$$ufzj
000201042 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b3$$ufzj
000201042 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.5.22$$gVol. 5, p. 202 - 209$$p202 - 209$$tBeilstein journal of nanotechnology$$v5$$x2190-4286$$y2014
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.pdf$$yOpenAccess
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.gif?subformat=icon$$xicon$$yOpenAccess
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201042 8564_ $$uhttps://juser.fz-juelich.de/record/201042/files/2190-4286-5-22.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201042 909CO $$ooai:juser.fz-juelich.de:201042$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201042 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201042 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201042 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201042 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201042 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201042 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201042 915__ $$0LIC:(DE-HGF)CCBY2$$2HGFVOC$$aCreative Commons Attribution CC BY 2.0
000201042 9141_ $$y2015
000201042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201042 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201042 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201042 920__ $$lyes
000201042 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201042 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000201042 9801_ $$aFullTexts
000201042 980__ $$ajournal
000201042 980__ $$aVDB
000201042 980__ $$aUNRESTRICTED
000201042 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201042 980__ $$aI:(DE-82)080009_20140620