000201044 001__ 201044
000201044 005__ 20210129215612.0
000201044 0247_ $$2doi$$a10.1073/pnas.1315716110
000201044 0247_ $$2ISSN$$a0027-8424
000201044 0247_ $$2ISSN$$a1091-6490
000201044 0247_ $$2WOS$$aWOS:000329614500023
000201044 0247_ $$2altmetric$$aaltmetric:1985339
000201044 0247_ $$2pmid$$apmid:24344291
000201044 037__ $$aFZJ-2015-03354
000201044 082__ $$a000
000201044 1001_ $$0P:(DE-HGF)0$$aLuftner, D.$$b0$$eCorresponding Author
000201044 245__ $$aImaging the wave functions of adsorbed molecules
000201044 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2014
000201044 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433926346_12153
000201044 3367_ $$2DataCite$$aOutput Types/Journal article
000201044 3367_ $$00$$2EndNote$$aJournal Article
000201044 3367_ $$2BibTeX$$aARTICLE
000201044 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201044 3367_ $$2DRIVER$$aarticle
000201044 520__ $$aThe basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.
000201044 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201044 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201044 7001_ $$0P:(DE-HGF)0$$aUles, T.$$b1
000201044 7001_ $$0P:(DE-HGF)0$$aReinisch, E. M.$$b2
000201044 7001_ $$0P:(DE-HGF)0$$aKoller, G.$$b3
000201044 7001_ $$0P:(DE-Juel1)128790$$aSubach, Sergey$$b4$$ufzj
000201044 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b5$$ufzj
000201044 7001_ $$0P:(DE-HGF)0$$aRamsey, M. G.$$b6
000201044 7001_ $$0P:(DE-HGF)0$$aPuschnig, P.$$b7
000201044 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1315716110$$gVol. 111, no. 2, p. 605 - 610$$n2$$p605 - 610$$tProceedings of the National Academy of Sciences of the United States of America$$v111$$x1091-6490$$y2014
000201044 909CO $$ooai:juser.fz-juelich.de:201044$$pVDB
000201044 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201044 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201044 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201044 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201044 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201044 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201044 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201044 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201044 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201044 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000201044 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201044 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201044 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201044 9141_ $$y2015
000201044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201044 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201044 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201044 920__ $$lyes
000201044 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201044 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000201044 980__ $$ajournal
000201044 980__ $$aVDB
000201044 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201044 980__ $$aI:(DE-82)080009_20140620
000201044 980__ $$aUNRESTRICTED