000201044 001__ 201044 000201044 005__ 20210129215612.0 000201044 0247_ $$2doi$$a10.1073/pnas.1315716110 000201044 0247_ $$2ISSN$$a0027-8424 000201044 0247_ $$2ISSN$$a1091-6490 000201044 0247_ $$2WOS$$aWOS:000329614500023 000201044 0247_ $$2altmetric$$aaltmetric:1985339 000201044 0247_ $$2pmid$$apmid:24344291 000201044 037__ $$aFZJ-2015-03354 000201044 082__ $$a000 000201044 1001_ $$0P:(DE-HGF)0$$aLuftner, D.$$b0$$eCorresponding Author 000201044 245__ $$aImaging the wave functions of adsorbed molecules 000201044 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2014 000201044 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433926346_12153 000201044 3367_ $$2DataCite$$aOutput Types/Journal article 000201044 3367_ $$00$$2EndNote$$aJournal Article 000201044 3367_ $$2BibTeX$$aARTICLE 000201044 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201044 3367_ $$2DRIVER$$aarticle 000201044 520__ $$aThe basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. 000201044 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0 000201044 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201044 7001_ $$0P:(DE-HGF)0$$aUles, T.$$b1 000201044 7001_ $$0P:(DE-HGF)0$$aReinisch, E. M.$$b2 000201044 7001_ $$0P:(DE-HGF)0$$aKoller, G.$$b3 000201044 7001_ $$0P:(DE-Juel1)128790$$aSubach, Sergey$$b4$$ufzj 000201044 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b5$$ufzj 000201044 7001_ $$0P:(DE-HGF)0$$aRamsey, M. G.$$b6 000201044 7001_ $$0P:(DE-HGF)0$$aPuschnig, P.$$b7 000201044 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1315716110$$gVol. 111, no. 2, p. 605 - 610$$n2$$p605 - 610$$tProceedings of the National Academy of Sciences of the United States of America$$v111$$x1091-6490$$y2014 000201044 909CO $$ooai:juser.fz-juelich.de:201044$$pVDB 000201044 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201044 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201044 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201044 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201044 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201044 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201044 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000201044 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000201044 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000201044 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000201044 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000201044 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000201044 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5 000201044 9141_ $$y2015 000201044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000201044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000201044 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000201044 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0 000201044 920__ $$lyes 000201044 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0 000201044 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000201044 980__ $$ajournal 000201044 980__ $$aVDB 000201044 980__ $$aI:(DE-Juel1)PGI-3-20110106 000201044 980__ $$aI:(DE-82)080009_20140620 000201044 980__ $$aUNRESTRICTED