000201051 001__ 201051
000201051 005__ 20240712112817.0
000201051 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2013.03.011
000201051 0247_ $$2ISSN$$a0955-2219
000201051 0247_ $$2ISSN$$a1873-619X
000201051 0247_ $$2WOS$$aWOS:000319539500009
000201051 037__ $$aFZJ-2015-03361
000201051 041__ $$aEnglish
000201051 082__ $$a660
000201051 1001_ $$0P:(DE-HGF)0$$aAcker, Jérôme$$b0$$eCorresponding Author
000201051 245__ $$aSintering and microstructure of potassium niobate ceramics with stoichiometric composition and with potassium- or niobium excess
000201051 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000201051 3367_ $$2DRIVER$$aarticle
000201051 3367_ $$2DataCite$$aOutput Types/Journal article
000201051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509636409_7904
000201051 3367_ $$2BibTeX$$aARTICLE
000201051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201051 3367_ $$00$$2EndNote$$aJournal Article
000201051 520__ $$aStoichiometric potassium niobate (KNbO3) and materials with K- and Nb excess show marked differences in sintering behaviour and microstructure. Shrinkage is shifted to lower temperatures in material with K-excess and to higher temperatures in material with Nb-excess compared to the stoichiometric KNbO3. The stoichiometric material densified to 4.36 g/cm3, whereas the densities of the off-stoichiometric materials remained lower. Abnormal grain growth leading to grains up to 500 μm in size was observed for stoichiometric KNbO3. K-excess KNbO3 shows cuboid grain shape with size between 20 and 60 μm. In the Nb-excess KNbO3 the grains remain small. Approaches to improve the densification of the KNbO3 materials are discussed by investigating processing variations specific for each composition. The objective of our work is to analyze the interrelations between stoichiometry, materials characteristics and processing stability of alkaline niobate ceramics. The results on KNbO3 mark a starting point for investigations on complex high performance systems.
000201051 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000201051 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201051 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b1$$eCorresponding Author
000201051 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b2
000201051 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2013.03.011$$gVol. 33, no. 11, p. 2127 - 2139$$n11$$p2127 - 2139$$tJournal of the European Ceramic Society$$v33$$x0955-2219$$y2013
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.pdf$$yRestricted
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.gif?subformat=icon$$xicon$$yRestricted
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201051 8564_ $$uhttps://juser.fz-juelich.de/record/201051/files/1-s2.0-S0955221913001490-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201051 909CO $$ooai:juser.fz-juelich.de:201051$$pVDB
000201051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201051 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000201051 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000201051 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000201051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201051 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201051 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201051 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201051 920__ $$lyes
000201051 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000201051 980__ $$ajournal
000201051 980__ $$aVDB
000201051 980__ $$aI:(DE-Juel1)IEK-9-20110218
000201051 980__ $$aUNRESTRICTED
000201051 981__ $$aI:(DE-Juel1)IET-1-20110218