000201056 001__ 201056 000201056 005__ 20240619091136.0 000201056 0247_ $$2doi$$a10.1016/j.bbapap.2009.11.003 000201056 0247_ $$2ISSN$$a1570-9639 000201056 0247_ $$2ISSN$$a1878-1454 000201056 0247_ $$2WOS$$aWOS:000272765200001 000201056 037__ $$aFZJ-2015-03366 000201056 082__ $$a570 000201056 1001_ $$0P:(DE-HGF)0$$aDoster, Wolfgang$$b0$$eCorresponding Author 000201056 245__ $$aThe Protein-Water Energy Seascape 000201056 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2010 000201056 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433927297_12157 000201056 3367_ $$2DataCite$$aOutput Types/Journal article 000201056 3367_ $$00$$2EndNote$$aJournal Article 000201056 3367_ $$2BibTeX$$aARTICLE 000201056 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201056 3367_ $$2DRIVER$$aarticle 000201056 520__ $$aProtein molecules and liquid water are very different systems both from a structural and a dynamic point of view. Proteins are long range ordered, but its local molecular motions are restricted by covalent bonds, which makes it solid-like. The dynamics of such a system is properly represented by barrier crossing within a well defined energy landscape. Water in contrast is short-range ordered, but long range diffusion allows it to flow, the essence of the liquid state. The energy landscape is thus fluctuating and motion is determined by collective reorganization of molecules forming transient holes, the landscape turns into a seascape. At the protein-water interface mutual interactions modify the properties of both systems. The protein landscape is modulated in time by density fluctuations in the liquid phase and interfacial water is transiently immobilized by rigid protein structure.The physical phenomenon of protein hydration is to some extent elusive, since there is no rigid shell of water around a protein molecule. Instead there is a fluctuating cloud which is thermodynamically and dynamically different from bulk water. A “hydrodynamic” definition of hydration water is to evaluate, how many water molecules near the protein surface have their displacement vector along the trajectory of the protein at any instant of time. This is determined by the strength of interaction with the protein and, hence, by the ratio of the time that is spent “attached” to the protein to the time spent in the bulk phase. The sum of the fractional contributions of all water molecules is the measured hydration. It is the mass of water, which migrates with the protein at any instant of time. When divided by the molecular weight of water, this yields the average number of molecules, which interact with the protein [1].An operational definition is to determine the amount of non-freezable water at low temperatures, which depends however on the cooling-rate if crystallization occurs. Below about 0.4 g water per g protein, crystallization is hindered. The hydration shell can be super-cooled until a glass transition interferes at 170 K. In such hydrated protein powders, the water molecules are permanently in contact with the protein surface, while protein translation and rotation is suppressed. Such surface-attached water molecules are still highly mobile, performing long-range diffusion, which is a property of the liquid state. The translational diffusion is arrested at the glass transition [2]. This dramatic slowing down of molecular motions of water is a useful approach to the coupling between water and protein dynamics 000201056 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0 000201056 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201056 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0 000201056 65017 $$0V:(DE-MLZ)GC-2003-2016$$2V:(DE-HGF)$$aOthers$$x1 000201056 65017 $$0V:(DE-MLZ)GC-180$$2V:(DE-HGF)$$aOthers$$x0 000201056 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000201056 7001_ $$0P:(DE-HGF)0$$aGutberlet, Thomas$$b1$$eCorresponding Author 000201056 773__ $$0PERI:(DE-600)2209540-8$$a10.1016/j.bbapap.2009.11.003$$gVol. 1804, no. 1, p. 1 - 2$$n1$$p1 - 2$$tBiochimica et biophysica acta / Proteins and proteomics$$v1804$$x1570-9639$$y2010 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.pdf$$yRestricted 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.gif?subformat=icon$$xicon$$yRestricted 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000201056 8564_ $$uhttps://juser.fz-juelich.de/record/201056/files/1-s2.0-S1570963909003173-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201056 909CO $$ooai:juser.fz-juelich.de:201056$$pVDB$$pVDB:MLZ 000201056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000201056 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x0 000201056 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1 000201056 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0 000201056 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201056 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201056 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201056 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201056 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201056 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201056 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000201056 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000201056 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000201056 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0 000201056 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1 000201056 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2 000201056 980__ $$ajournal 000201056 980__ $$aVDB 000201056 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000201056 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000201056 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000201056 980__ $$aUNRESTRICTED 000201056 981__ $$aI:(DE-Juel1)JCNS-2-20110106