001     201074
005     20210129215620.0
024 7 _ |a 10.1093/jxb/err149
|2 doi
024 7 _ |a 0022-0957
|2 ISSN
024 7 _ |a 1460-2431
|2 ISSN
024 7 _ |a 2128/8837
|2 Handle
024 7 _ |a WOS:000293904500022
|2 WOS
037 _ _ |a FZJ-2015-03384
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Henkes, G. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions
260 _ _ |a Oxford
|c 2011
|b Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435060868_32636
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition.
536 _ _ |a 89582 - Plant Science (POF2-89582)
|0 G:(DE-HGF)POF2-89582
|c POF2-89582
|f POF II T
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Jousset, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bonkowski, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thorpe, M. R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Scheu, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lanoue, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schurr, U.
|0 P:(DE-Juel1)129402
|b 6
|u fzj
700 1 _ |a Rose, U. S. R.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1093/jxb/err149
|g Vol. 62, no. 12, p. 4337 - 4344
|0 PERI:(DE-600)1466717-4
|n 12
|p 4337 - 4344
|t The @journal of experimental botany
|v 62
|y 2011
|x 1460-2431
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201074/files/J.%20Exp.%20Bot.-2011-Henkes-4337-44.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201074
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129402
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89582
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 2.0
|0 LIC:(DE-HGF)CCBYNC2
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21