000201088 001__ 201088
000201088 005__ 20210129215625.0
000201088 0247_ $$2doi$$a10.1016/j.ssc.2013.11.015
000201088 0247_ $$2ISSN$$a0038-1098
000201088 0247_ $$2ISSN$$a1879-2766
000201088 0247_ $$2WOS$$aWOS:000331634500011
000201088 037__ $$aFZJ-2015-03398
000201088 041__ $$aEnglish
000201088 082__ $$a540
000201088 1001_ $$0P:(DE-HGF)0$$aBalasubramanian, Padmanabhan$$b0$$eCorresponding Author
000201088 245__ $$aElectronic structure of Nd1−xYxMnO3 from Mn K edge absorption spectroscopy and DFT methods
000201088 260__ $$aNew York, NY [u.a.]$$bElsevier Science$$c2014
000201088 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433938085_12152
000201088 3367_ $$2DataCite$$aOutput Types/Journal article
000201088 3367_ $$00$$2EndNote$$aJournal Article
000201088 3367_ $$2BibTeX$$aARTICLE
000201088 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201088 3367_ $$2DRIVER$$aarticle
000201088 520__ $$aThe electronic structure of Nd1−xYxMnO3 (x=0–0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied eg (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual px, py and pz states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn–Teller effect with doping.
000201088 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000201088 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201088 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000201088 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
000201088 65017 $$0V:(DE-MLZ)GC-2003-2016$$2V:(DE-HGF)$$aOthers$$x2
000201088 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000201088 65017 $$0V:(DE-MLZ)GC-180$$2V:(DE-HGF)$$aOthers$$x0
000201088 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000201088 7001_ $$0P:(DE-HGF)0$$aYadav, Ruchika$$b1
000201088 7001_ $$0P:(DE-Juel1)144543$$aNair, Harikrishnan$$b2
000201088 7001_ $$0P:(DE-HGF)0$$aTsai, H. M.$$b3
000201088 7001_ $$0P:(DE-HGF)0$$aJoly, Y.$$b4
000201088 7001_ $$0P:(DE-HGF)0$$aLee, J. F.$$b5
000201088 7001_ $$0P:(DE-HGF)0$$aElizabeth, Suja$$b6
000201088 7001_ $$0P:(DE-HGF)0$$aSekhar, B. R.$$b7
000201088 7001_ $$0P:(DE-HGF)0$$aPao, C. W.$$b8
000201088 7001_ $$0P:(DE-HGF)0$$aPong, W. F.$$b9
000201088 773__ $$0PERI:(DE-600)1467698-9$$a10.1016/j.ssc.2013.11.015$$gVol. 181, p. 50 - 53$$p50 - 53$$tSolid state communications$$v181$$x0038-1098$$y2014
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.pdf$$yRestricted
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.gif?subformat=icon$$xicon$$yRestricted
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201088 8564_ $$uhttps://juser.fz-juelich.de/record/201088/files/1-s2.0-S0038109813005383-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201088 909CO $$ooai:juser.fz-juelich.de:201088$$pVDB$$pVDB:MLZ
000201088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144543$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201088 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x0
000201088 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000201088 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000201088 9141_ $$y2015
000201088 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201088 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201088 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201088 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201088 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201088 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201088 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201088 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201088 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201088 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000201088 980__ $$ajournal
000201088 980__ $$aVDB
000201088 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000201088 980__ $$aUNRESTRICTED