000201097 001__ 201097
000201097 005__ 20240625095125.0
000201097 0247_ $$2doi$$a10.1021/bi400367r
000201097 0247_ $$2ISSN$$a0006-2960
000201097 0247_ $$2ISSN$$a1520-4995
000201097 0247_ $$2WOS$$aWOS:000330099300011
000201097 0247_ $$2altmetric$$aaltmetric:1743592
000201097 0247_ $$2pmid$$apmid:23964651
000201097 037__ $$aFZJ-2015-03402
000201097 082__ $$a570
000201097 1001_ $$0P:(DE-HGF)0$$aDibenedetto, Domenica$$b0
000201097 245__ $$aA Molecular Dynamics Simulation-Based Interpretation of Nuclear Magnetic Resonance Multidimensional Heteronuclear Spectra of α-Synuclein·Dopamine Adducts
000201097 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2013
000201097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433938892_12152
000201097 3367_ $$2DataCite$$aOutput Types/Journal article
000201097 3367_ $$00$$2EndNote$$aJournal Article
000201097 3367_ $$2BibTeX$$aARTICLE
000201097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201097 3367_ $$2DRIVER$$aarticle
000201097 520__ $$aMultidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy provides valuable structural information about adducts between naturally unfolded proteins and their ligands. These are often highly pharmacologically relevant. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is complicated. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret two-dimensional (2D) NMR data. We apply this tool to the naturally unfolded protein human α-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solutions. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms with experimental data that the ligands bind preferentially to 125YEMPS129 residues in the C-terminal region and to a few residues of the so-called NAC region consistently. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminus. Hence, the performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes in the protein.
000201097 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000201097 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201097 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1$$eCorresponding Author
000201097 7001_ $$0P:(DE-HGF)0$$aCaliandro, Rocco$$b2
000201097 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3
000201097 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/bi400367r$$gVol. 52, no. 38, p. 6672 - 6683$$n38$$p6672 - 6683$$tBiochemistry$$v52$$x1520-4995$$y2013
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.pdf$$yRestricted
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.gif?subformat=icon$$xicon$$yRestricted
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201097 8564_ $$uhttps://juser.fz-juelich.de/record/201097/files/bi400367r.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201097 909CO $$ooai:juser.fz-juelich.de:201097$$pVDB
000201097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201097 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201097 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201097 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201097 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201097 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201097 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201097 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000201097 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000201097 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000201097 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000201097 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x2
000201097 980__ $$ajournal
000201097 980__ $$aVDB
000201097 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201097 980__ $$aI:(DE-Juel1)JSC-20090406
000201097 980__ $$aI:(DE-Juel1)GRS-20100316
000201097 980__ $$aUNRESTRICTED
000201097 981__ $$aI:(DE-Juel1)INM-9-20140121
000201097 981__ $$aI:(DE-Juel1)JSC-20090406
000201097 981__ $$aI:(DE-Juel1)GRS-20100316