001     201097
005     20240625095125.0
024 7 _ |a 10.1021/bi400367r
|2 doi
024 7 _ |a 0006-2960
|2 ISSN
024 7 _ |a 1520-4995
|2 ISSN
024 7 _ |a WOS:000330099300011
|2 WOS
024 7 _ |a altmetric:1743592
|2 altmetric
024 7 _ |a pmid:23964651
|2 pmid
037 _ _ |a FZJ-2015-03402
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Dibenedetto, Domenica
|b 0
245 _ _ |a A Molecular Dynamics Simulation-Based Interpretation of Nuclear Magnetic Resonance Multidimensional Heteronuclear Spectra of α-Synuclein·Dopamine Adducts
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433938892_12152
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy provides valuable structural information about adducts between naturally unfolded proteins and their ligands. These are often highly pharmacologically relevant. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is complicated. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret two-dimensional (2D) NMR data. We apply this tool to the naturally unfolded protein human α-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solutions. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms with experimental data that the ligands bind preferentially to 125YEMPS129 residues in the C-terminal region and to a few residues of the so-called NAC region consistently. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminus. Hence, the performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes in the protein.
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)145921
|a Rossetti, Giulia
|b 1
|e Corresponding Author
700 1 _ |0 P:(DE-HGF)0
|a Caliandro, Rocco
|b 2
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 3
773 _ _ |0 PERI:(DE-600)1472258-6
|a 10.1021/bi400367r
|g Vol. 52, no. 38, p. 6672 - 6683
|n 38
|p 6672 - 6683
|t Biochemistry
|v 52
|x 1520-4995
|y 2013
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201097/files/bi400367r.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201097
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145921
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)GRS-20100316


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21