000201101 001__ 201101
000201101 005__ 20210129215628.0
000201101 0247_ $$2doi$$a10.1007/JHEP09(2010)073
000201101 0247_ $$2ISSN$$a1029-8479
000201101 0247_ $$2ISSN$$a1126-6708
000201101 0247_ $$2Handle$$a2128/8771
000201101 0247_ $$2WOS$$aWOS:000282371300042
000201101 0247_ $$2altmetric$$aaltmetric:3946506
000201101 037__ $$aFZJ-2015-03406
000201101 082__ $$a530
000201101 1001_ $$0P:(DE-HGF)0$$aBorsányi, Szabolcs$$b0
000201101 245__ $$aIs there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III
000201101 260__ $$aBerlin$$bSpringer$$c2010
000201101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433941057_12150
000201101 3367_ $$2DataCite$$aOutput Types/Journal article
000201101 3367_ $$00$$2EndNote$$aJournal Article
000201101 3367_ $$2BibTeX$$aARTICLE
000201101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201101 3367_ $$2DRIVER$$aarticle
000201101 520__ $$aThe present paper concludes our investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices (N t = 16) and we work again with physical quark masses. The new results on this broad cross-over are in complete agreement with our earlier ones. We compare our findings with the published results of the hotQCD collaboration. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. The findings of the hotQCD collaboration can be recovered by using a distorted spectrum which takes into account lattice discretization artifacts and heavier than physical quark masses. This analysis provides a simple explanation for the observed discrepancy in the transition temperatures between our and the hotQCD collaborations.
000201101 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000201101 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201101 7001_ $$0P:(DE-HGF)0$$aFodor, Zoltán$$b1$$eCorresponding Author
000201101 7001_ $$0P:(DE-HGF)0$$aHoelbling, Christian$$b2
000201101 7001_ $$0P:(DE-HGF)0$$aKatz, Sándor D.$$b3
000201101 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b4
000201101 7001_ $$0P:(DE-HGF)0$$aRatti, Claudia$$b5
000201101 7001_ $$0P:(DE-HGF)0$$aSzabó, Kálmán K.$$b6
000201101 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP09(2010)073$$gVol. 2010, no. 9, p. 73$$n9$$p73$$tJournal of high energy physics$$v2010$$x1029-8479$$y2010
000201101 8564_ $$uhttps://juser.fz-juelich.de/record/201101/files/art_10.1007_JHEP09%282010%29073.pdf$$yOpenAccess
000201101 8564_ $$uhttps://juser.fz-juelich.de/record/201101/files/art_10.1007_JHEP09%282010%29073.gif?subformat=icon$$xicon$$yOpenAccess
000201101 8564_ $$uhttps://juser.fz-juelich.de/record/201101/files/art_10.1007_JHEP09%282010%29073.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201101 8564_ $$uhttps://juser.fz-juelich.de/record/201101/files/art_10.1007_JHEP09%282010%29073.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201101 8564_ $$uhttps://juser.fz-juelich.de/record/201101/files/art_10.1007_JHEP09%282010%29073.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201101 909CO $$ooai:juser.fz-juelich.de:201101$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201101 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000201101 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000201101 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000201101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201101 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201101 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201101 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201101 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201101 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201101 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000201101 980__ $$ajournal
000201101 980__ $$aVDB
000201101 980__ $$aFullTexts
000201101 980__ $$aUNRESTRICTED
000201101 980__ $$aI:(DE-Juel1)JSC-20090406
000201101 9801_ $$aFullTexts