000201108 001__ 201108
000201108 005__ 20210129215631.0
000201108 0247_ $$2doi$$a10.1016/j.physletb.2011.12.030
000201108 0247_ $$2ISSN$$a0370-2693
000201108 0247_ $$2ISSN$$a1873-2445
000201108 0247_ $$2WOS$$aWOS:000300134400008
000201108 0247_ $$2altmetric$$aaltmetric:180752
000201108 0247_ $$2Handle$$a2128/24296
000201108 037__ $$aFZJ-2015-03413
000201108 041__ $$aEnglish
000201108 082__ $$a530
000201108 1001_ $$0P:(DE-HGF)0$$aBruckmann, Falk$$b0
000201108 245__ $$aTopology of dynamical lattice configurations including results from dynamical overlap fermions
000201108 260__ $$aAmsterdam$$bNorth-Holland Publ.$$c2012
000201108 3367_ $$2DRIVER$$aarticle
000201108 3367_ $$2DataCite$$aOutput Types/Journal article
000201108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433941994_12149
000201108 3367_ $$2BibTeX$$aARTICLE
000201108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201108 3367_ $$00$$2EndNote$$aJournal Article
000201108 520__ $$aWe investigate how the topological charge density in lattice QCD simulations is affected by violations of chiral symmetry caused by the fermion action. To this end we compare lattice configurations generated with a number of different actions including first configurations generated with exact dynamical overlap quarks. We visualize the topological profiles after mild smearing. In the topological charge correlator we measure the size of the positive core, which is known to shrink to zero extension in the continuum limit. To leading order we find the core size to scale linearly with the lattice spacing with the same coefficient for all actions, even including quenched simulations. In the subleading term the different actions vary over a range of about 10%. Our findings suggest that non-chiral lattice actions at current lattice spacings do not differ much for observables related to topology, both among themselves and compared to overlap fermions.
000201108 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000201108 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201108 7001_ $$0P:(DE-HGF)0$$aGruber, Florian$$b1$$eCorresponding Author
000201108 7001_ $$0P:(DE-HGF)0$$aCundy, Nigel$$b2
000201108 7001_ $$0P:(DE-HGF)0$$aSchäfer, Andreas$$b3
000201108 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b4$$ufzj
000201108 773__ $$0PERI:(DE-600)1466612-1$$a10.1016/j.physletb.2011.12.030$$gVol. 707, no. 2, p. 278 - 285$$n2$$p278 - 285$$tPhysics letters / B$$v707$$x0370-2693$$y2012
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.pdf$$yOpenAccess
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.gif?subformat=icon$$xicon$$yOpenAccess
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201108 8564_ $$uhttps://juser.fz-juelich.de/record/201108/files/1-s2.0-S0370269311014870-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201108 909CO $$ooai:juser.fz-juelich.de:201108$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000201108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201108 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000201108 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000201108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201108 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201108 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201108 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201108 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201108 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201108 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000201108 980__ $$ajournal
000201108 980__ $$aVDB
000201108 980__ $$aUNRESTRICTED
000201108 980__ $$aI:(DE-Juel1)JSC-20090406
000201108 9801_ $$aFullTexts