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We investigate how the topological charge density in lattice QCD simulations is affected by violations of
chiral symmetry caused by the fermion action. To this end we compare lattice configurations generated
with a number of different actions including first configurations generated with exact dynamical overlap
quarks. We visualize the topological profiles after mild smearing. In the topological charge correlator we
measure the size of the positive core, which is known to shrink to zero extension in the continuum limit.
To leading order we find the core size to scale linearly with the lattice spacing with the same coefficient
for all actions, even including quenched simulations. In the subleading term the different actions vary
over a range of about 10%. Our findings suggest that non-chiral lattice actions at current lattice spacings
do not differ much for observables related to topology, both among themselves and compared to overlap
fermions.
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1. Introduction

The topological charge density has always been an important
observable to characterize the vacuum of Quantum Chromody-
namics (QCD). Instantons are the most natural candidates carrying
topological charge. Models based on them are intuitive, e.g. induce
a chiral condensate through near zero modes, but also limited,
since it became clear that the instanton ensemble cannot be di-
lute in reality. Such models are also not complete, as instantons do
not explain confinement.

In recent years a more elaborated view has emerged. The rel-
evant topological degrees of freedom depend on the scale. While
instantons are seen in the IR (after strong filtering), lower dimen-
sional objects are present in the UV, for a review see [1]. A laminar
structure of them seems needed to match the known behavior of
the topological correlator [2] (see below). This picture is based in
particular on the analysis of lattice configurations.

Lattice QCD has seen progress towards smaller lattice spacings
and realistic pion masses. Chiral symmetry, however, is realized
very differently in these simulations. Most of the fermion actions
used keep only an approximation of it. The reason is that the only
known option to implement chiral symmetry exactly are Ginsparg–
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Wilson fermions, usually realized as overlap fermions, which are
numerically very expensive.

Since chiral symmetry is a key feature of QCD, it is not clear
a priori, how harmful this approximation is for physics results.
However, the fundamental aim of lattice QCD is to avoid uncon-
trolled approximations and, therefore, it is necessary to perform
benchmark comparisons with dynamical overlap fermions to quan-
tify the size of systematic errors due to chiral symmetry violation.

In this Letter we analyze the topological charge in simula-
tions obtained with different state-of-the-art lattice fermion ac-
tions. Topology is intimately connected to chiral symmetry, both
through the U (1) anomaly giving mass to the η′ and through the
index theorems linking fermionic zero modes to topological charge.
We, therefore, believe that the topological charge density, although
it is a purely gluonic quantity, is well suited to test the effects due
to violation of chiral symmetry for different fermion actions. The
distance at which the topological charge correlator changes sign
seems to be especially robust against small changes in the simula-
tion parameters.

We use the field-theoretic definition of the lattice topologi-
cal charge and compare topological structures obtained after a
few sweeps of smearing (alternative filtering methods, for instance
based on chiral lattice Dirac operators, have been shown to largely
agree on topological structures and to be sensitive of the differ-
ence between quenched and dynamical configurations, see below).
We visualize the topological profiles after mild smearing though
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results for different lattice spacing a are difficult to compare. To
reach more quantitative results, we compare the size of the posi-
tive core in the topological charge correlator and the amplitude of
the contact term.

For these quantities we compare the results with those of con-
figurations generated with overlap fermions. These latter simula-
tions are too expensive for comprehensive simulations, but they
allow for a benchmark test of the described nature on small lat-
tices.

Our main conclusions are that the differences between the
actions are not very large, even not for quenched simulations.
The sensitivity to the lattice spacing a far exceeds that to the
fermion action used. Therefore, observed differences, e.g. between
quenched and dynamical fermion results should not be over inter-
preted. Obviously similar analyses of other quantities are needed
to decide whether these conclusions are valid in general.

2. The topological charge density

2.1. . . . in the continuum

The topological charge and its (Euclidean) density are defined
as

Q =
∫

d4x q(x), q(x) = 1

32π2
εμνρσ Tr

(
Fμν(x)Fρσ (x)

)
. (1)

In this Letter we focus on the 2-point function of the topological
charge density

Cq(x − y) ≡ 〈
q(x)q(y)

〉
, (2)

which integrates to the topological susceptibility

χtop = 〈Q 2〉
V

=
∫ 〈

q(0)q(x)
〉
d4x. (3)

In the continuum, this correlator is negative for any finite dis-
tance |x − y| > 0. This follows from reflexion-positivity of the
theory and the pseudo-scalar nature of the topological charge den-
sity [3]. At zero distance, however, we obviously have a positive
correlator, as Cq(0) = 〈q(0)2〉 is nothing but the mean-square topo-
logical charge density.

This property on its own would be strange enough, but
the topological susceptibility is non-negative and vanishes in
the chiral limit [3]. Therefore, the positive contact term has to
(over)compensate the negative contribution of the correlator in
the spacetime integral in Eq. (3).

The topology of the gauge field nicely reflects itself in fermionic
observables. Due to the famous index theorems, the total topolog-
ical charge gives the difference of numbers of zero modes with
left-handed and right-handed chirality, Q = nL − nR , of the chiral
(massless) Dirac operator.

2.2. . . . and on the lattice

The topological charge, as a genuine continuum quantity, is not
defined in a strict sense on a lattice. Of course, the expectation
is that its properties will be recovered in the continuum limit. At
finite lattice spacing, however, it cannot be defined without ambi-
guities.

Throughout this Letter we will use the discretized topological
charge density of Eq. (1) (also called field-theoretic charge den-
sity), where Fμν is an improved lattice field strength tensor [4],
which combines 1 × 1, 2 × 2 and 3 × 3 loops to achieve O (a4)-
improvement at tree-level.1 This definition is better behaved in the
continuum limit than the naive discretization with only 1×1 loops
and gives topological charges Q = ∑

x q(x) closer to integers.
Calculating the topological charge density on a typical Monte

Carlo configuration one finds that the signal is dominated by
short range fluctuations. Thus, an operator which couples strongly
to these fluctuations is ill-defined. Small variations of the gauge
links would lead to big variations of the resulting topological den-
sity. Hence, filtering methods are necessary to extract the relevant
longer range degrees of freedom.

Many methods have been developed since the advent of lattice
QCD. Amongst them are cooling, APE smearing [5], stout smearing
[6] and variants thereof, as well as techniques based on the low
mode truncation of the lattice Laplacian [7].

A different definition of a lattice topology uses the index theo-
rem, which for Ginsparg–Wilson operators is valid2 and can be for-
mulated in terms of a local density, qferm(x) ≡ Tr(γ5(D(x, x)/2−1))

[8]. This density can be filtered naturally by including in a spectral
representation of D only the lowest IR modes [9,10] (see also [11]
for a recent filtering method relying on adjoint fermions).

The structures which emerge after these filtering procedures
are not unique. They strongly depend on parameters like num-
bers of iterations or mode number. However, in the weak filtering
regime one finds that different methods reveal similar local struc-
tures if one carefully matches their parameters [12–15].

3. Smearing

In this work we use the improved stout smearing algorithm
[15,16]. This is an iterative procedure acting on the gauge links.
Each step consists of a simultaneous update of all links by

U stout
μ (x) = exp

(
iρΩ(x)

) · Uμ(x). (4)

Here ρ is a parameter which determines the strength of smearing
and Ω(x) is a hermitian traceless matrix built from the weighted
sum of all 1 × 1 and 2 × 1 Wilson loops including the old link:

Ω(x) =
∑[

5 − 2ε

3
W1×1(x)

+ 1 − ε

12

(
W2×1(x) + W1×2(x)

)]∣∣∣∣ hermitian,
traceless

, (5)

where we used i
2 (Ω

†
μ(x) − Ωμ(x)) − i

6 Tr{Ω†
μ(x) − Ωμ(x)} as the

hermitian traceless projection.
While other smearing methods, as well as cooling, destroy

topological structures in the long run, this algorithm is designed to
preserve instanton-like objects in a wide range of their size param-
eter, if we choose ε = −0.25 and ρ = 0.06 [16]. Moreover, 5 steps
of this improved stout smearing were found to produce a topolog-
ical charge density very similar to the fermionic one, qferm [15],
which is why we stick to these parameters in this work.

4. Lattice configurations

4.1. Overview of lattice configurations used in this work

We use full dynamical N f = 2 and N f = 2 + 1 flavor config-
urations from different fermion formulations. They are available
through the International Lattice Data Grid [23] in a wide range
of lattice spacings, lattice volumes and pion masses.

1 For details on the improvement coefficients see [4].
2 Still the total topological charge on the lattice is not unique since it depends on

the solution of the GW relation, e.g. on the kernel of the overlap operator.
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Table 1
Configurations used in this work. (Abbreviations: Sym = Symanzik, plaq. = plaquette, LW = Lüscher–Weisz, Iw = Iwasaki.)

Fermion (gauge) action N f a [fm] V [a4] mπ [MeV] Nconf Ref.

twisted mass (Sym) 2 0.10–0.063 24348–32364 ≈ 500 20 [17]
twisted mass (Sym) 2 0.10–0.051 20348–32364 ≈ 280 20 [17]
np imp. clover (plaq.) 2 0.11–0.07 24348 ≈ 500 20 [18]
np imp. clover (plaq.) 2 0.10–0.07 32364 ≈ 250 20 [18]
asqtad staggered (LW) 2 + 1 0.15–0.09 16348–28396 ≈ 500 5 [19]
chirally imp. (LW) 2 0.15 16332 ≈ 500 20 [20]
top. fixed overlap (Iw) 2 0.12 16332 ≈ 500 20 [21]
overlap (LW) 2 + 1 0.13–0.12 12324 ≈ 500 15 [22]
The fermion actions in these simulations may be classified with
respect to their chiral symmetry. Variants of Wilson fermions like
twisted mass [17] and nonperturbative clover [18] break chiral
symmetry explicitly (by a lattice artefact). Staggered fermion ac-
tions like asqtad [19] possess a remnant chiral symmetry. For those
actions we have enough data to perform an extrapolation a → 0.

We also use chirally improved fermions, which are an approx-
imate solution to the Ginsparg–Wilson relation [20] and as exact
solutions we take overlap fermions with an extra topology fixing
term [21] and full dynamical overlap fermions, see next subsec-
tion. More details on the configurations can be found in Table 1.
The pion masses for the configurations used vary between 250 and
500 MeV, which does not seem to be a major problem as little
mass dependence is found.

4.2. Dynamical overlap configurations

The overlap Dirac operator [24] at a mass parameter μ and for
some suitable kernel operator K is

Do = (1 + μ) + (1 − μ)γ5 sign(K ). (6)

The principle algorithmic challenge in the generation of dynamical
overlap gauge field ensembles is the difficulty changing topologi-
cal charge during the Monte Carlo history. As in the continuum, to
move to different topological sectors for a Ginsparg–Wilson lattice
gauge theory requires a discontinuous change in the action. For
an overlap action, where there is a clear and consistent definition
of the topological index, a topological index change is equivalent
to a small eigenvalue of the kernel operator crossing zero. From
this viewpoint, there are two ways in which topology changes may
be suppressed: either the density of low kernel eigenvalues is de-
creased, or there is a potential barrier between topological sectors.
The Hybrid Monte Carlo trajectory can only penetrate this barrier
if it has sufficient momentum (there is a clear analogy between
the mechanics of the overlap HMC algorithm and the classical me-
chanics of a particle approaching a finite potential barrier: the only
difference is that instead of three spatial dimensions in classical
mechanics, the number of ‘spatial’ dimensions is of order of the
lattice volume in the molecular dynamics). Changing topology be-
comes harder for most lattice discretizations as they approach the
continuum limit. For overlap fermions we have this challenge at
any lattice spacing.

JLQCD’s topology fixed simulations [21] add extra fields to the
action which act as a determinant factor det{K 2/(K 2 + η2)} in the
Boltzmann weight. This has the effect of suppressing (and remov-
ing) the low kernel eigenvalues, such that the simulation is carried
out in a fixed topological sector, which greatly reduces the com-
puter time required for each trajectory.

The physical effects of the topology fixing are removed in the
infinite volume limit [25], while the suppression of low modes
is said to mimic the expected behavior in the continuum limit.
Questions remain, however, about the ergodicity of this approach;
in particular if the creation of pairs of would-be zero modes (for
example an instanton/anti-instanton pair) is driven by mixing be-
tween low modes of the kernel operator.

The second possibility is to generate overlap ensembles allow-
ing (and even encouraging as much as the underlying physics will
permit) topological charge changes. The standard, and only known,
method to modify the Hybrid Monte Carlo algorithm for a discon-
tinuous action is the transmission/reflection algorithm first pro-
posed in [26] and refined in several subsequent papers [27–32],
together with the eigenvector differentiation algorithm proposed
in [33], which is required to accurately differentiate near degener-
ate pairs of eigenvectors whose eigenvalues lie close to a disconti-
nuity. The chief focus of current algorithmic research has been to
improve the rate of topological tunneling. It can be shown that if
the discontinuity of the action at the boundary between topolog-
ical sectors is �S , then, with an initial Gaussian momentum dis-
tribution, the probability of tunneling from one topological sector
to another scales like ∼ min(1, e−�S ) for all the possible transmis-
sion/reflection algorithms.

To obtain a high rate of topological charge changes and, pre-
sumably, a small topological autocorrelation time, it is crucial to
use the form of the action that has the smallest �S . When trying
to find it one encounters the problem that the pseudo-scalar esti-
mate of the determinant gives a very bad estimate of �S [27], in
particular for small fermion mass (�S ∼ μ−2).

〈�Spseudofermion〉 = 〈φ†| 1

D†
o Do(λ > 0)

− 1

D†
o Do(λ < 0)

|φ〉
> 〈�Sreal〉
= 2 log

(
1 − 2(1 − μ)ψ

†
0

1

Do
ψ0

)
, (7)

where ψ0 is the kernel eigenvector whose eigenvalue changes sign
and φ is the pseudofermion field used to estimate the determinant.

To improve the pseudofermion approach one can introduce the
modified Dirac operator

D̃o = (1 + μ) + (1 − μ)γ5 sign(K − Λ0), (8)

for a real parameter Λ0 which remains constant over the course of
the trajectory. With this operator one can rewrite

det Do = det D̃o det(Do/D̃o). (9)

The first term det D̃o is continuous during the topological index
change and can be estimated using pseudofermions, while the
second term log det(Do/D̃o) can be calculated without pseudo-
fermions. This factorization leads to a correct estimate for the
action discontinuity:

�S = � log det(Do/D̃o) = � log det Do = �Sreal. (10)

This factorization method (together with other, similar, approaches)
thus gives the optimal approach to tunneling through the topo-
logical barrier, with the highest transmission rate possible while
conserving the molecular dynamics energy.
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Fig. 1. The topological index history for one of the 12324 dynamical overlap ensem-
bles.

Because det D̃o at mass zero satisfies a Ginsparg–Wilson rela-
tion, and we do not permit the index of det D̃o to change during
a trajectory, it is possible to run single flavor simulations by using
the relation

det D̃o ∝ det

(√
2 + 2μ2

± 1 − μ2

2
√

2 + 2μ2
(1 ± γ5) sign(K − Λ0)(1 ± γ5)

)
, (11)

where the sign is chosen to avoid the zero modes and the con-
stant of proportionality is a function of the mass and the index of
det D̃o. Because the operator on the right-hand side is hermitian
and positive definite, it is possible to use a standard pseudofermion
approach to estimate the determinant for a single flavor, without
need to employ an expensive rational approximation.

The data used in this study is based on three simulations on
12324 lattices using a tadpole improved Lüscher–Weisz gauge ac-
tion. Though we can simulate individual quarks we choose two
degenerate light quark masses and the strange quark mass is tuned
according to the QCDSF’s prescription [34]. The pion masses, which
are restricted by the small lattice volume, were measured to be
around 510 MeV, 560 MeV and 600 MeV, at lattice spacings of
around 0.12 fm. Over 1000 trajectories were generated for the
lightest pion mass, and over 600 trajectories were used for the
heavier pion masses. We used a Wilson kernel with one step of
improved stout smearing [16].

The limiting autocorrelation time for these ensembles was, not
surprisingly, the topological one. For the lightest mass, there were
on average 1.05 attempted topological index changes per trajec-
tory, of which 37.5% resulted in a change of the topological index.
This (naively) corresponds to one topological index change for ev-
ery 2.8 trajectories of length 0.5. (This excludes trajectories where
the topological charge changed twice or where the trajectory was
rejected.) The Monte Carlo acceptance rate was around 85%. Values
for the other 12324 runs were similar.

However, the integrated autocorrelation time for the squared
topological charge for this lightest mass ensemble was around 40
trajectories (of length 0.5), compared to around 8 for the pla-
quette. This problem in global topological autocorrelation can be
seen in Fig. 1. It can also be seen that, although topological index
changes occur commonly, there still exist problematic long term
correlations for the topological index. Obviously this is an issue for
further algorithmic improvements, which, however, should not in-
fluence the present analysis significantly.
Fig. 2. Slices of the topological charge for dynamical overlap (mπ = 600 MeV), asq-
tad staggered, dynamical overlap with topology fixing term (mπ ≈ 500 MeV each)
and nonperturbative clover (quite heavy mπ ≈ 1 GeV) fermions, all with the same
lattice spacing a = 0.12 fm. The quenched counterparts of the latter two simulation
algorithms are also depicted (Iwasaki ↔ top. fixed overlap and plaquette ↔ clover).
The lattice volume is 123 in all cases. This corresponds to a size of approximately
(1.5 fm)3 in physical units. The color scale is equal in all plots: Blue represents
negative topological charge and red positive charge. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

5. Results

5.1. Visualization of the densities

A direct way of comparing the topological structures is to plot
three-dimensional slices of the topological charge density. It is cru-
cial to notice that a direct comparison of the profiles from different
actions is only possible if the lattice spacings are similar because
the densities q(x) strongly scale with a, namely as a−4.

In Fig. 2 we show the topological structure of one sample
configuration for different fermion actions, after 5 steps of im-
proved stout smearing. They all have the same lattice spacing of
a = 0.12 fm and the same physical volume V = (1.44 fm)3. Be-
low we will discuss how sensitive the topological charge density
is to a, implying that without further analysis one can only com-
pare lattice results for different actions if they have the same lat-
tice spacing. For comparison we have generated quenched systems
with two different gauge actions and included their topological
profiles in that figure. We have chosen the plaquette gauge action
and the Iwasaki gauge action, which are the quenched counter-
parts of the nonperturbative clover action and the topology fixed
overlap configurations, respectively. While this is only a small frac-
tion of the total four-dimensional volume, one can see already
some of the main properties analyzed in detail below. Dynamical



282 F. Bruckmann et al. / Physics Letters B 707 (2012) 278–285
Fig. 3. Three-dimensional slice of the topological charge density for twisted mass fermions at fixed physical volume V = (1.9 fm)3 after 5 steps of improved stout smearing.
We see an increasing laminar structure for finer lattices.
lattice simulations tend to give larger fluctuations of the topologi-
cal charge density than quenched ones, as already pointed out in,
e.g., Refs. [14,35]. This property is not shared by the dynamical
overlap results. Topology fixed overlap fermions lie somewhat in
between. Below we will quantify these observations.

To stress the importance of the lattice constant a we show in
Fig. 3 the topological charge density for different lattice spacings
but fixed physical volume for twisted mass fermions. Two main ef-
fects in the continuum limit are clearly visible. First, the structure
becomes more and more fine grained and second the magnitude
of the density in physical units increases.

5.2. Topological clusters

A cluster analysis of the topological charge density is a pow-
erful tool to characterize the profile of the structure (cf. [12,14]).
A cluster is defined as a set of neighboring lattice points with the
same sign of the topological charge density.

To analyze the shape of these clusters, we cut the absolute
value of the topological charge density at a variable value qcut and
determine the number of clusters Ncluster(qcut) with |q(x)| < qcut as
a function of the total number of points above qcut, Npoints(qcut).

It has been shown that this cluster number obeys a power-law
and that the exponent

ξ = d log(Ncluster(qcut))

d log(Npoints(qcut))
(12)

of this power-law is highly characteristic for the underlying topo-
logical structure. Pure noise, for example, would correspond to
ξ = 1 as every point forms its own cluster and a very smooth den-
sity would have a cluster exponent close to zero.

In Fig. 4 we show this power-law for the actions used in the
previous section. We find that the power-laws agree very well and
that the exponents are all compatible with each other. Therefore,
the topological profiles are similar and the apparent difference in
the three-dimensional visualizations in Fig. 2 originates from a dif-
ference in the absolute values of the densities.

5.3. Topological charge density correlator

Another possibility to quantify the topological structures is to
look at the two-point correlation function of the topological charge
density. To this end, we compute the “all-to-all” correlator of the
density (see Eq. (2)) after 5 steps of improved stout smearing. At
this point we want to recall that the resulting density is very sim-
ilar to the fermionic topological charge density [15] and therefore,
we find the same qualitative behavior for the two-point function
as in Ref. [36]. We show an example of the correlator for the dy-
namical overlap ensemble in Fig. 5.
Fig. 4. The number of clusters per lattice volume as a function of the volume frac-
tion above the cut-off, for the actions used in Fig. 2. Fitting a power-law yields an
exponent of ∼ 0.85.

Fig. 5. Two-point function of the topological charge density after 5 improved stout
smearing steps for an ensemble of dynamical overlap configurations.

At small distances the correlator develops a positive core of ra-
dius rc, for large distance the correlator is compatible with zero
and in between it is slightly negative [36]. This behavior is charac-
teristic for all fermion actions and quenched ensembles [15].

5.3.1. Size of positive core
The radius of the positive core rc is given by the (first) zero of

the correlator. To this end, we interpolate the correlator between
the adjacent data points. Although, there are many potential er-
ror sources, the position of this zero seems to be rather robust
and has an excellent signal to noise ratio. Most importantly rc
shows only little dependence on a when expressed in lattice units,
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Fig. 6. Zero of the 2-point function of the topological charge density. The errors – which are partly too small to be visible – result from the interpolation between the points
of the correlator. We included fits and error bands for twisted mass, staggered and clover action. There are three different points from the overlap ensembles at different
pion masses: (a) 600 MeV, (b) 560 MeV and (c) 510 MeV. Note that the twisted mass results for mπ = 280 MeV and 500 MeV nearly fall on top of one another.
Table 2
Parameters of the single fits. (Only two lattice spacings were available for the light
nonperturbative clover ensembles and, hence, no fit error can be given.)

Fermion action mπ [MeV] C B [fm−2]

twisted mass ≈ 500 2.16(2) 25(3)

twisted mass ≈ 280 2.163(2) 23.2(8)

np imp. clover ≈ 500 2.148(6) 3.2(6)

np imp. clover ≈ 250 2.146(−) 1.6(−)

asqtad staggered ≈ 500 2.14(1) 12(1)

quenched Iwasaki – 2.13(5) 35(7)

quenched plaquette – 2.07(4) 31(4)

which allows to compare configurations generated for different lat-
tice spacings.

We measured this rc for different lattice spacings, while keep-
ing the pion mass approximately constant. Fig. 6 is our main result
from which we will primarily draw our conclusions on the rele-
vance of chiral symmetry for topological properties.

The core size has to vanish in the continuum limit. We expect
discretization/smearing errors which are independent of the action
used and errors related to these actions. As all actions are O(a)-
improved the latter should only set in at O(a2). Therefore, we fit
the data with a function of the form

rc/a = C + B · a2. (13)

We find indeed that the coefficients C are for all actions compat-
ible with C = 2.15 and that the B ’s differ, see Table 2. The size
of these differences is what we are interested in. We did not fit
higher order terms in the universal part, because our data points
were not sufficient to do so and because we are only interested in
the differences between the actions. We expected that actions with
better chiral properties should give results which are markedly
closer to the dynamical overlap ones than actions with strong vio-
lation of chiral symmetry.

Let us further discuss the universality of this scaling behavior.
First of all, if we compare the curves for twisted mass and clover
fermions at mπ ≈ 500 MeV and mπ ≈ 250 MeV, we find a rela-
tively weak dependence on the mass.

Secondly, we have found the constant C to depend on smear-
ing (not shown). This is not surprising as the positive part of the
topological charge correlation gets smeared out over more lattice
spacings.

Fig. 6 also includes the results for dynamical overlap fermions
with and without topology fixing term at similar lattice spacings.
The data points for dynamical overlap configurations are not on
one line, because they belong to different pion masses and, hence,
different fit curves.

We have also included two quenched results for comparison.
The extrapolations yield a consistent value for the constant C
with a slightly larger error than the dynamical configurations. The
quenched results are in accordance with the results of Horvath
et al. [36]. They used the full fermionic definition of the topologi-
cal charge density (not truncated in Dirac modes) and find a core
size rc ≈ 2a for the Iwasaki gauge action.

The non-universal term Ba2 measures how rc/a from different
actions converges towards C . The spread at current lattice spacings
a � 0.15 fm is on the order of 10%. The overlap data lie in the mid-
dle of that range and even the quenched results are not far off. Our
conclusion is that the different actions with their different treat-
ment of chiral symmetry do not differ much with respect to this
important topological observable. Consequently, all of them can be
used to study topological quantities. To the extent that topologi-
cal properties are relevant for hadron properties this observation
also ties in with the fact that quite often the differences between
quenched and dynamical results for these are not huge (typically
of the order 10–30%).

5.3.2. Contact term
As explained in the introduction, the two-point function has to

develop a positive contact term in the continuum limit. Therefore,
the mean-square value of the topological charge density 〈q(0)2〉
has to be divergent in the continuum limit. Fig. 7 shows a dou-
ble logarithmic plot of 〈q(0)2〉 in physical units versus the lattice
spacing. The linear behavior indicates a power-like divergence for
a → 0 for all actions:

〈
q(0)2〉 ∝ a−c (14)

for some positive number c.
This exponent is similar for the different actions and its value

is around −6. Only the nonperturbative clover action deviates
from this value with an exponent around −7. As the contact
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Fig. 7. Maxima of the two point function of the topological charge density. Dy-
namical overlap results are labeled by mπ as: (a) 600 MeV, (b) 560 MeV and (c)
510 MeV. Note that the twisted mass results for mπ = 280 MeV and 500 MeV fall
on top of one another.

term is highly divergent in the continuum limit, we do not ex-
pect the fitted values to agree and, therefore, we do not present
them.

The contact term of the dynamical ensembles is bigger than
for their quenched counterparts, but it also important to notice,
that the contact term for dynamical overlap configurations at a =
0.12 fm lies between the two quenched simulations (plaquette and
Iwasaki). Thus we can conclude, that dynamical fermions generate
indeed larger fluctuations in the vacuum at finite lattice spacing,
as argued in [35], but also that the differences between differ-
ent actions are as large as those between quenched and dynamical
simulations.

6. Summary

We have investigated the topological charge density for state-
of-the-art lattice actions with dynamical fermions, including new
dynamical overlap simulations. This quantity was chosen because
of the intimate connection between topology and chiral symmetry.
Different fermion actions do generate different topological land-
scapes, as visualized in Fig. 2 and quantified through the topolog-
ical charge correlator. The change in the topological observables
is not very large. The radius of the positive core of the topological
correlator rc approaches zero with the same slope C for all actions.
In the next-to-leading order rc differs, but the spread is below 10%
and even quenched simulations do not produce markedly differ-
ent results. In particular, simulations with exact overlap fermions
give results which are quite similar to those obtained with topol-
ogy fixed overlap fermions. The differences between quenched and
dynamical simulations are not larger than those between differ-
ent dynamical fermion actions. Also, the topological charge density
seems to be little affected by changes in pion mass. In contrast,
the effects for 〈q(0)2〉 are large but unsystematic. These results are
very sensitive to the lattice spacing a, implying that one should be
very careful not to jump to conclusions when comparing topologi-
cal properties of different configurations. If we use our dynamical
overlap results as benchmark for the quality of the other actions
with respect to chirality we have to conclude that all of them
are reasonable successful and none of them seems to be clearly
superior. The differences between results for dynamical overlap
fermions and topology fixed overlap fermions are especially small,
as one might have expected.
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