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We perform a Nf ¼ 2þ 1 lattice QCD simulation to determine the quark spin fractions of hadrons using

the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix

elements relevant for quark spin fractions are extracted from the linear response of the hadron energies.

Simulations indicate that the Feynman-Hellmann method offers statistical precision that is comparable to

the standard three-point function approach, with the added benefit that it is less susceptible to excited-state

contamination. This suggests that the Feynman-Hellmann technique offers a promising alternative for

calculations of quark line disconnected contributions to hadronic matrix elements. At the SU(3)-flavor

symmetry point, we find that the connected quark spin fractions are universally in the range 55%–70% for

vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is

quite sensitive to the strength of SU(3) breaking.
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I. INTRODUCTION

The decomposition of the nucleon spin presents a

fascinating challenge for the theoretical understanding of

nonperturbative QCD. While the simplest quark model has

all of the nucleon spin attributed to the spin of its quark

constituents, the latest experimental measurements suggest

that only about one third of the nucleon spin comes from

the spin of the quarks [1]. This has motivated an extensive

theoretical effort to understand the QCD origins of this

quark spin suppression. We refer the reader to the com-

prehensive reviews of Refs. [2–5].

Lattice QCD provides a systematically improvable

technique to study nonperturbative features of QCD, and

hence offers significant potential to give valuable insight

into the spin decomposition of the nucleon. Recent results

have been published in [6–9]—also see the lattice review

[10]. Nevertheless, there are still challenges in the lattice

formulation, particularly those associated with the simu-

lation of so-called “disconnected” quantities. Disconnected

quantities refer to those where the external probe couples

to a hadron correlator only through the underlying gauge

field configuration. Standard three-point function techniques

require the stochastic estimation of these quark loop con-

tributions and, while progress has been made, e.g. [11,12],

it has proven to be notoriously difficult to extract a nonzero

signal.

In the present paper we explore an alternative technique

for the extraction of hadronic spin matrix elements in lattice

QCD. In particular, we utilize the Feynman-Hellmann (FH)

theorem applied to the lattice regularization framework.

We consider the energy shifts of hadrons in the presence of

a uniform weak external field which couples directly to the

quark spin. This is similar to an idea proposed in [13]. By

the FH theorem, the leading linear response of the energy

can be identified with the corresponding spin matrix

element of interest. A first exploration of this method

was performed in [14], and later in [15], for the gluon

energy-momentum tensor. A full simulation would require

the generation of new gauge ensembles which modify the

fermion action of the sea quarks, incorporating the external

field. Here we establish the method by coupling the field to

the connected quark fields and benchmark our results

against standard three-point function techniques.

There are some key advantages of the Feynman-

Hellmann method. Importantly, there has been plenty of*
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debate surrounding the difficulty in controlling excited-

state contamination in conventional three-point function

calculations of gA [16–21]. Since the FHmethod outlined in

this paper only requires the extraction of hadron energies

from lattice two-point functions, greater control of excited-

state contamination is possible through the identification

of a distinct effective mass plateau. In addition, the quark

propagators generated in the presence of the external field

can be inserted into any hadronic correlation function and

therefore, for a single set of inversions, one can study the

spin content of many different hadrons. In contrast, usual

three-point function methods require a new sequential

propagator for each hadronic state of interest.
1

With easy access to a variety of hadronic states, we are

able to report first dynamical lattice QCD simulation results

for the spin content of vector mesons and decuplet baryons,

in addition to the baryon octet. Interestingly we find that

at the SU(3)-flavor symmetric point of our simulations the

connected quark spin fraction is around 55%–70%, irre-

spective of the hadron in question. This is in line with

the general expectation of relativistic corrections to quark

model wave functions [22–24]. We also present results

away from the SU(3) symmetric point, where we find

SU(3) breaking effects that could lead to significant break-

down of this universality in the light-quark domain [25].

The outline of the manuscript is as follows. Section II

describes the formalism and notation used in this paper,

and the strategy for the implementation of the Feynman-

Hellmann theorem in lattice QCD simulations (a detailed

derivation of the theorem is included in Appendix A).

The lattice configurations of the present study are reviewed

in Sec. III, and the analysis techniques are described in

Sec. IV. Our numerical results for various hadrons are

reported in Sec. V. Concluding remarks are summarized

in Sec. VI.

II. FORMALISM

In this section we present the formalism and notation

used in this paper with regard to the spin structure of

hadrons, and explain the approach of using the Feynman-

Hellmann theorem to calculate matrix elements.

A. Spin notation

We express the total spin of a hadron of spin J by

J ¼ 1

2
ΔΣ

J þ LJ
q þ JJG; ð1Þ

where LJ
q and JJG denote the quark orbital angular momen-

tum and gluon angular momentum, respectively. The total

quark spin sum is given by ΔΣ
J ¼ P

qΔq
JJ, which in the

Bjorken limit is defined in terms of the zeroth moments of

the polarized quark distributions,

ΔqJm ¼
Z

dx½qJm↑ ðxÞ − qJm↓ ðxÞ�: ð2Þ

Our notation is such that these describe generalizations

of polarized quark distributions for hadrons of spin J with

longitudinal spin polarization m, as defined by Ref. [26].

In lattice simulations, these can be computed by evaluating

matrix elements of the local operator

Aμ
q ¼ q̄iγ5γ

μq: ð3Þ

In the rest frame of the hadron, the forward matrix elements

of this operator directly isolate the quark spin contributions,

hH; JmjA3
qð0ÞjH; Jmi ¼ 2MHΔq

Jm; ð4Þ

for a hadron with polarization m with respect to the z axis.
It is these matrix elements that we wish to determine for a

variety of spin-J hadrons, H.

B. The Feynman-Hellmann method

The Feynman-Hellmann theorem offers an alternative

method for calculating matrix elements of a particular

operator. In Appendix Awe derive the theorem as relevant

for lattice calculations. Here we summarize the main points.

Suppose we wish to calculate the matrix element of an

operator O with some hadron state jHi. Consider modi-

fying the QCD action such that

S→ Sþ λ

Z
d4xOðxÞ; ð5Þ

where λ is a real parameter, and O is a local operator.

Then by the Feynman-Hellmann theorem we have that

∂EðλÞ
∂λ

¼ 1

2EðλÞ hHjOjHiλ; ð6Þ

where E is the energy of the hadron state, and the subscript

λ on the correlator indicates that it is evaluated with respect

to the modified action. Note when λ ¼ 0, we have

∂EðλÞ
∂λ

����
λ¼0

¼ 1

2E
hHjOjHi; ð7Þ

where the matrix element on the right-hand side is now

with respect to the unmodified action. If the modification in

Eq. (5) is made in the context of a lattice calculation, then

one can examine the behavior of hadron energies as the

parameter λ changes, and extract the above matrix element

at the point where λ ¼ 0.

1
Nevertheless, the standard three-point method can access

many different matrix elements simultaneously for a given choice
of hadronic state.
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Recall the lattice estimate of the expectation value of

an operator O over field configurations UðiÞ is given by

hOi ≈ 1

N

XN

i¼1

O
⎴

½UðiÞ�; ð8Þ

where the bracket over O indicates that all quark bilinears

in O have been Wick contracted and replaced with quark

propagators, and where the field configurations have been

generated using the weighting

det½DðUÞ�e−Sg½U�: ð9Þ

There are two points at which modifications to the action

may be made in this calculation.

Firstly, quark propagators in the operator O are calcu-

lated by inverting the Dirac operator matrix. This matrix is

given by the quark contribution to the QCD action, and

so must be modified if we change the quark action.

This change is straightforward to apply, only requiring a

redefinition of the Dirac operator.

Secondly, we note that the weighting of the gauge fields

in Eq. (9) depends on both the quark component of the

action in the functional determinant, and the gluon com-

ponent in the exponential. Hence, any modification we

make to the action should be included during the generation

of the background gauge fields.

By choosing to neglect either one of these modifications,

we are able to individually isolate connected and discon-

nected contributions to matrix elements. Modifications to

the gauge configurations allow access to disconnected

quantities, and modifications to the calculation of propa-

gators allow access to connected quantities.

The method above presents several advantages for cal-

culating, in particular, quantities such as the disconnected

quark contributions to the proton spin. Such disconnected

contributions are included in a simulation during the gen-

eration of gauge configurations, and the calculation of

the appropriate matrix element is reduced to the calculation

of hadron energies for different values of λ, in order to

apply Eq. (7).

We will demonstrate the implementation of the Feynman-

Hellmann method by calculating the connected quark

contributions to the spin of hadrons. This has been inves-

tigated previously using standard three-point function meth-

ods, results with which we will compare our calculations.

The simulations discussed in Secs. IV and V make use

of the partially quenched case for calculating connected

quantities, and we do not generate any modified field

configurations in the present paper.

III. SIMULATION DETAILS

We use gauge field configurations with 2þ 1 flavors of

nonperturbatively OðaÞ-improved Wilson fermions and a

lattice volume of L3 × T ¼ 323 × 64. The lattice spacing

a ¼ 0.074ð2Þ fm is set using a number of singlet quantities

[27–29]. The clover action used comprises the tree-level

Symanzik improved gluon action together with a stout

smeared fermion action, modified (as described in Sec. IV)

for the implementation of the Feynman-Hellmann method.

We have ensembles with two sets of hopping parameters,

ðκl; κsÞ ¼ ð0.120900; 120900Þ, (0.121040, 120620), where
we work in the isospin-symmetric limit such that κl ¼
κu ¼ κd. Table I gives the masses of various hadrons as

realized on these configurations [29].

As discussed in the next section, the initial investigation

of this method is performed at the SU(3) symmetric point

(κl ¼ κs ¼ 0.120900) where all three quarks have the same

mass, corresponding to a pion mass of around 470 MeV.

On a subset of 350 configurations we explore the feasibility

of the method using up to four different values of λ.

After tuning the method at this point, we then apply it to

an ensemble with a lighter pion mass of around 360 MeV.

As all of our lattice ensembles are generated with the

singlet quark mass m̄ ¼ 1

3
ð2ml þmsÞ held fixed, this lattice

also contains a heavier strange quark. This will allow us to

demonstrate the suitability of this method for the study of

the quark spin contributions to a variety of hadrons.

Unless otherwise stated, all results quoted in the remain-

der of this paper are unrenormalized (indicated by a super-

script “latt.”). However, in order to compare with existing

results in the literature, we use preliminary results for the

nonsinglet axial current renormalization constant [30]

ZNS
A ¼ 0.85ð2Þ: ð10Þ

We note that most of the results quoted in the remainder of

the paper are either for the total or individual quark spin

contributions to a hadron’s spin which also requires knowl-

edge of the singlet axial current renormalization ZS
A [11],

which has an anomalous dimension. Since ZS
A deviates from

ZNS
A starting at Oðα2sÞ in perturbation theory, we expect ZS

A

in the MS scheme at μ2 ¼ 4 GeV2 to differ from ZNS
A by no

more than a couple of percent. A similar sized correction

maybe be needed to achieve fullOðaÞ improvement [31]. In

future work where we intend to also include disconnected

contributions, we will implement a proper treatment of the

TABLE I. Table of hadron masses (in lattice units) for each

ensemble.

κl 0.120900 0.121040

κs 0.120900 0.120620

aMπ 0.1747(5) 0.1349(5)

aMN 0.4673(27) 0.4267(50)

aMΛ 0.4673(27) 0.4547(43)

aMΔ 0.5676(64) 0.5520(79)

aMρ 0.3341(34) 0.3127(38)
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renormalization. However, for the exploratory work carried

out in this paper, we neglect these minor corrections and

simply use ZNS
A in Eq. (10) when a comparison of renor-

malized results is made.

IV. ANALYSIS TECHNIQUES

Here we show how the Feynman-Hellmann theorem may

be applied to calculate quark axial charges of hadrons,

using the proton as an example. We will then show how the

determination of these axial charges can be improved

through the use of ratios of lattice two-point functions.

Finally we will investigate the optimal choice of λ values

needed to reliably determine the axial charges at minimal

computational cost.

A. Spin operator and spin projection

In our simulations, we modify the QCD action such that

S→ SðλÞ ¼ Sþ λ
X

x

q̄ðxÞiγ5γ3qðxÞ; ð11Þ

where q denotes a particular quark flavor. Note iγ5γ3
is the Euclidean-space form of the spin operator in the

z-direction. By application of the Feynman-Hellmann

theorem for a zero-momentum hadron H we have

∂EðλÞ
∂λ

����
λ¼0

¼ 1

2M
hHjq̄iγ5γ3qjHi: ð12Þ

Comparing with Eq. (3), we see that this slope gives direct

access to the quark spin contributions,

Δq ¼ ∂EðλÞ
∂λ

����
λ¼0

: ð13Þ

For simplicity, we have suppressed the explicit J and m
spin indices, as is conventional for a spin-1

2
target.

Calculation of Δq has now been reduced from the calcu-

lation of lattice three-point functions to the simpler task

of measuring energies from lattice two-point functions.

In our simulations, the modification to the action in

Eq. (11) is only made to the Dirac matrix when calculating

propagators, hence we only access the quark connected

contributions to Δq, as discussed in Sec. II. Hence on the

lattice, we have that

Δqlattconn ¼
∂EðλÞ
∂λ

����
λ¼0

: ð14Þ

Calculation of proton energies proceeds via normal

lattice hadron-spectroscopy techniques. We make use of

the standard proton interpolating operator

Op ¼ ϵabcðuTaCγ5dbÞuc; ð15Þ

where only color indices are shown explicitly; spinor indices

are implied by matrix and vector notation. We use the

positive parity projection operator (in Euclidean space)

Γ4 ¼
1

2
ð1þ γ4Þ ð16Þ

to project out the positive parity state. Since the matrix

element in Eq. (3) requires the hadron state to have definite

spin, we combine the operator in Eq. (16) with spin-

projection operators,

Γ� ¼ 1

2
ð1� iγ5γ3ÞΓ4: ð17Þ

Together these operators allow us to project out the

m ¼ � 1

2
positive-parity proton states.

Recalling Eq. (11), we note that reversing the spin

polarization of the hadron state is equivalent to reversing

the sign of λ. Hence with a single choice of λ we are able to

identify the energies of the spin-up proton with positive λ,

and those of the spin-down proton with negative λ. In this

way, we effectively double our sampled parameters, with-

out increasing the simulation time.

As a first test, we simulate with four values of

λ ¼ 0.0125, 0.025, 0.0375, 0.05 at the SU(3)-flavor sym-

metric point (κl ¼ κs ¼ 0.120900). Figure 1 shows results

for the ground state proton energy as a function of λ

for both spin-up (positive λ) and -down (negative λ) states.

In the two data sets, the λ term in Eq. (11) has been added to

the up quark and down quark separately. We fit to a Taylor

expansion in the parameter λ,

EðλÞ ¼ Eð0Þ þ λΔqþ 1

2
λ2
∂2EðλÞ
∂λ2

����
λ¼0

þ…; ð18Þ

FIG. 1 (color online). Change in proton energy with the

parameter λ. The two data sets show the effect when the extra

term is applied to each light flavor. Note that at the λ ¼ 0 point

we have the unshifted proton energy averaged over both spin

projections. κl ¼ κs ¼ 0.120900.
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retaining only up to quadratic terms in this case. We see that

the slopes of the energy as a function of λ for the two flavors

of quark have opposite signs, indicating the expected result

that the up quark has a positive spin contribution, and the

down quark a negative contribution. We also note the

presence of quadratic and higher order terms in λ at larger

λ. These are not presently of interest, as only the linear

behavior at λ ¼ 0 is required to apply Eq. (14).

Using the linear parameter from the fit in Eq. (18), we

have for the (unrenormalized) connected quark spin con-

tributions in the proton,

Δulattconn ¼ 0.97ð13Þ; ð19Þ

Δdlattconn ¼ −0.27ð11Þ: ð20Þ

The errors here come from a bootstrap analysis of the

proton correlators. Noting the form of the interpolating

operator in Eq. (15), specifically the quark content, we may

interchange up and down quarks above to obtain symmetric

results for the proton’s isospin partner, the neutron.

Henceforth we will not distinguish between individual

members of isospin multiplets when quoting results (all

calculations are performed in the isospin symmetric limit).

Specific quark flavors can be deduced from the context.

B. Correlator ratios

By taking advantage of the correlation between results at

different λ using the same statistical ensemble, we may

dramatically improve the previous results. We can write the

energy of a general hadron in terms of an energy shift

ΔEðλÞ as

EðλÞ ¼ Eðλ ¼ 0Þ þ ΔEðλÞ; ð21Þ

where E0 ¼ M is the mass of the hadron. Then Eq. (14)

becomes

Δqlattconn ¼
∂ΔEðλÞ

∂λ

����
λ¼0

: ð22Þ

Hence we only need to calculate energy shifts with respect

to λ in order to make use of the Feynman-Hellmann

theorem. These energy shifts can be determined accurately

from ratios of two-point functions.

For large times t we expect that a lattice two-point

function has the asymptotic form

Cðλ; tÞ→large t e
−EðλÞt

2EðλÞ jAðλÞj
2: ð23Þ

Considering the ratio of two such correlation functions, one

calculated with λ ¼ 0 and the other at λ ≠ 0, we have

Cðλ; tÞ
Cðλ ¼ 0; tÞ→

large t
e−ΔEðλÞt

Eð0Þ
EðλÞ

jAðλÞj2
jAð0Þj2 : ð24Þ

The exponential dependence of the above ratio of corre-

lators contains the difference in energies between the

undisturbed energy and the energy at some λ. Using this

quantity to measure energy shifts allows us to make use of

correlations between calculations with different values of λ.

Since each calculation is performed using the same set of

underlying gauge configurations, we expect fluctuations

in the correlators to largely cancel, leaving a much cleaner

signal.

Returning to the example of the last section, the upper

plot in Fig. 2 shows nucleon effective mass plots for

different values of λ on the up quark, and the fit-range used

FIG. 2 (color online). Nucleon effective mass plots for different

values of λ on the up quark at the SU(3)-flavor symmetric point.

The first plot shows absolute energies, and the second energy

shifts obtained from correlator ratios. Only a few λ have been

included for clarity. The vertical scale is the same for both plots

(only shifted), emphasizing the improvement achieved.
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for each. The lower plot displays the effective masses for

the energy shifts obtained from the ratio of correlators in

Eq. (24). We note that the energy shifts are much clearer

using the new procedure, and we are able to fit at earlier

times, possibly due to the canceling of excited states.

Figure 3 shows the resulting nucleon energy shifts as a

function of λ. We observe that the relative errors between

different points are now much smaller, and we are able to

much more tightly constrain the quadratic fit as compared

to Fig. 1. We are also able to fix the λ ¼ 0 point to zero,

since there is no energy shift for zero background spin-

field. The linear plus quadratic behavior seen previously

has been preserved, as we have only shifted all data points

by a constant amount.

From the linear parameter in the quadratic fit, we

calculate the quark axial charges

Δulattconn ¼ 0.990ð20Þ; ð25Þ
Δdlattconn ¼ −0.313ð14Þ: ð26Þ

These results are consistent with those in Eqs. (19) and

(20), and our uncertainties have been significantly reduced.

Note that if we instead extract the linear parameter from a

fit including also a cubic term in Eq. (18), we find no

change within the quoted statistical error, suggesting that

retaining terms up to quadratic order in λ is sufficient.

For comparison we have results calculated with a three-

point function method [32] using 330 configurations from

the same larger ensemble of 1500 configurations from

which the 350 used in this work were sourced. The three-

point functions method gives for the quark axial charges,

Δulattconn ¼ 0.911ð29Þ; ð27Þ

Δdlattconn ¼ −0.290ð16Þ; ð28Þ
where we see comparable precision with our results in

Eqs. (25) and (26), but obvious tension with the result for

the up quark. This may be due to the fact that the Feynman-

Hellmann method has a greater control of excited-state

contamination than the fixed-sink three-point method with

a single source-sink smearing.

We note that future simulations investigating discon-

nected contributions will require the generation of separate

sets of gauge fields for each value of λ realized. The lack

of correlation between such ensembles means one cannot

take advantage of correlator ratios as described to reduce

statistical noise. However, one could take correlated ratios

of spin-up and spin-down correlation functions from

the same underlying set of gauge field configurations to

achieve a similar end.

C. Optimization

The spin matrix elements studied here have utilized

numerous values of the background field strength λ in order

to accurately determine the derivative in the zero-field limit.

As each value of the background field parameter requires

the computation of a new set of propagators, we explore

how one could best optimize the signal strength for a

minimal set of inversions. This optimization is particularly

necessary in the context of extending this work to dis-

connected operators, where new additional simulations are

required for each value of the field strength.

We would like to realize a minimum of two different

field strengths (with spin-up or -down projections), and

restrict ourselves to a fixed-intercept quadratic fit in λ.

Quadratic terms do not affect the linear terms that we are

interested in, because these terms shift the energies equally

on either side of the λ ¼ 0 point. Realizing a minimum of

two field strengths (four values of λ, after spin-up or -down

projection) allows us to be confident in uncertainties

calculated for the two-parameter fixed-intercept quadratic fit.

We consider fitting quadratically to subsets of our

existing results at the SU(3)-flavor symmetric point (κl ¼
κs ¼ 0.120900), realizing only two of the four values of λ at

a time (four total data points after spin projection). Table II

shows results for the quark axial charges calculated using

these subsets. The calculated axial charges remain con-

sistent within errors with each different fit; however, there

FIG. 3 (color online). Change in nucleon energy for different

parameter values with a quadratic fit. κl ¼ κs ¼ 0.120900.

TABLE II. Connected spin contributions to the proton calculated

using partial fits to only two values of the external field strength, λ.

The fit used is given in Eq. (18), where we retain up to quadratic

terms. The first column lists the values of λ used, and the second

shows the calculated values of the quark axial charges that result.

λ1 λ2 Δulattconn Δdlattconn

0.0125 0.0250 0.994(18) −0.313ð13Þ
0.0125 0.0375 0.992(19) −0.312ð13Þ
0.0125 0.0500 0.988(19) −0.311ð14Þ
0.0250 0.0375 0.991(21) −0.314ð14Þ
0.0250 0.0500 0.987(23) −0.313ð15Þ
0.0375 0.0500 0.981(27) −0.314ð17Þ
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does seem to be a systematic shift in Δu as we move to

higher λ. Also, the statistical errors in the energy shifts

increase as λ increases. Importantly, we note that the results

obtained from a quadratic fit to the smallest two values of λ

(in the top row of Table II) agree within errors with results

obtained from a fit to the entire data set in Eqs. (25) and (26),

and with comparable statistical error. For these reasons, we

restrict ourselves to realizing only the two smallest λ when

considering our second ensemble at smaller pion mass, as

this appears to give sufficient accuracy and precision.

Also, we note that using only two values of the back-

ground field strength brings the total number of matrix

inversions required for a computation of the axial charge

of the proton in line with the standard three-point function

method. With two values of λ, three colors and four spinor

indices, we must calculate 36 inversions for every operator

that we wish to investigate. For a three-point function

calculation, three colors, four spinor indices and three

quark propagators also lead to 36 inversions for each

hadron that we consider. If the aim is to compute the

forward proton matrix element of the axial operator, our

results indicate that the Feynman-Hellmann method can

achieve comparable statistical precision to the three-point

function approach, at fixed computational cost.

V. RESULTS

Here we summarize connected quark spin contributions

obtained using correlator ratio methods for the octet and

decuplet baryons and vector mesons. All results quoted are

from quadratic fits in λ. Calculations at the SU(3) sym-

metric point make use of the full data set of four values of λ.

Simulations carried out away from the SU(3)-flavor sym-

metric point realize two values of the background field

strength parameter, λ ¼ 0.0125, 0.025, as motivated by the

discussion in Sec. IV C. For all analyses we make use of

correlator ratios as discussed in Sec. IV B.

A. Octet baryons (J ¼ 1
2
)

Using the preliminary renormalization in Eq. (10), we

conclude our discussion of the proton in Sec. IV by quoting

renormalized values for gA at our two simulated pionmasses,

gAðmπ ¼ 470 MeVÞ ¼ 1.105ð29Þ; ð29Þ
gAðmπ ¼ 360 MeVÞ ¼ 1.072ð32Þ; ð30Þ

which are in good agreement with results in the literature,

[16–21] (or [33] for a recent review). For the remaining

octet baryons (excluding the Λ) we re-use the form of the

interpolating operator for the proton in Eq. (15),

Ooctet ¼ ϵabcðq1TaCγ5q2bÞq1c; ð31Þ

substituting light and strange quarks to access the Σ and Ξ

states (in the isospin-symmetric limit). For example for the

Σ
þ we use the operator

OΣ
þ ¼ ϵabcðuTaCγ5sbÞuc: ð32Þ

In addition, we use the spin and parity-projection operators

given in Eqs. (16) and (17).

The calculation proceeds as described in Sec. IV, and

Table III shows results for the octet (details of the Λ

calculation are discussed later). q1 and q2 in the table refer

to the quark flavors as they appear in the appropriate form

of the interpolating operator in Eq. (31). As we are working

in the isospin-symmetric limit, the results quoted can be

applied to all members of each isospin multiplet, with

appropriate flavor relabeling. So for instance we have

for the Σ
þ (quark content uus) that Δq1 ¼ Δu and

Δq2 ¼ Δs, whereas for the Ξ0 (quark content uss)
Δq1 ¼ Δs, Δq2 ¼ Δu.
Away from the SU(3) symmetric point (at the lighter

pion mass) we see evidence for SU(3)-flavor-breaking

effects in the quark spin contributions to the baryon octet.

As we discussed in Sec. III, the singlet quark mass is the

same for both ensembles, so the light quarks are lighter and

the strange quark heavier on the second ensemble. We see

Δu and Δd decreasing for the nucleon, whereas Δu ðΔdÞ
decreases and Δs increases for the Ξ0ð−Þ.
By comparing the individual quark flavor results of

the octet baryons, we can gain an insight into the envi-

ronmental sensitivity of the quark axial charges. As we

move from the N to Σ state with the heavier strange quark

for example, we see the light quark contribution decreasing.

For the Λ baryon we use the interpolating operator

OΛ ¼ ϵabc
1ffiffiffi
6

p ½2ðuTaCγ5dbÞsc þ ðuTaCγ5sbÞdc

− ðdTaCγ5sbÞuc�: ð33Þ

Note that when calculating two-point functions for the Λ,

we do not calculate separate propagators for the up and

down quarks. Hence the spin-field term in Eq. (11) is added

to both light quarks at once, and so in Table III, Δq1 ¼
Δuþ Δd and Δq2 ¼ Δs. Figure 4 shows results for the

energy shift of the Λ baryon on the κl ¼ 0.121040, κs ¼
0.120620 ensemble for two values of λ ¼ 0.0125, 0.025.

TABLE III. Table of connected spin contributions for the

baryon octet. For all baryons except the Λ, q1 and q2 are as

they appear in Eq. (31). For the Λ, Δq1 ¼ Δuþ Δd and

Δq2 ¼ Δs.

κl 0.120900 0.121040

κs 0.120900 0.120620

Δq1
latt
conn Δq2

latt
conn Δq1

latt
conn Δq2

latt
conn

N 0.990(20) −0.313ð14Þ 0.971(22) −0.291ð20Þ
Σ 0.990(20) −0.313ð14Þ 0.948(18) −0.297ð8Þ
Ξ 0.990(20) −0.313ð14Þ 1.039(12) −0.275ð11Þ
Λ −0.070ð23Þ 0.785(18) −0.050ð17Þ 0.803(10)
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The strong, highly constrained positive slope for the

strange quark axial charge is consistent with the common

expectation that the heavier strange quark carries the

dominant spin fraction. Conversely, the small negative

light quark contribution is more weakly constrained,

subject predominantly only to quadratic effects.

In order to make a comparison with existing results in the

literature, we make use of the preliminary results for ZA

given in Eq. (10). For the Λ baryon at the lighter pion mass

of around 360 MeV, we have for light and strange

connected contributions,

Δuconn ¼ Δdconn ¼ −0.043ð14Þ ð34Þ

Δsconn ¼ 0.683ð18Þ: ð35Þ

Very few other lattice calculations of these quantities have

been performed, the only example being in [34] from a

chiral extrapolation of quenched calculations at pion

masses of around 600 MeV and upwards,

Δuconn ¼ Δdconn ¼ −0.02ð4Þ; ð36Þ

Δsconn ¼ 0.68ð4Þ; ð37Þ

which are in good agreement.

B. Decuplet baryons (J ¼ 3
2
)

For the decuplet baryons, we make use of the interpolat-

ing operator

Odecuplet ¼ ϵabc
1ffiffiffi
3

p ½2ðq1TaCγ�q2bÞq1c

þ ðq1TaCγ�q1bÞq2c�; ð38Þ

where we define γ� (in Euclidean space) as

γ� ¼ −i
1

2
ðγ1 � iγ2Þ: ð39Þ

Analagously to the case of the octet baryons, appropriate

quark flavors are substituted into Eq. (38) to access all

decuplet states. We again make use of the parity and spin-

projection operators in Eqs. (16) and (17). However, we

must take care when analyzing the m ¼ � 1

2
states.

Using the γ� matrices, we create diquarks with J ¼ 1

and m ¼ �1. The Γ� operator projects out the spin of the

single quark to m ¼ � 1

2
as before. For the m ¼ � 3

2
baryon

states, there is no problem combining the diquark and

single quark, since

j1 þ 1i
����
1

2
þ 1

2

�
¼

����
3

2
þ 3

2

�
; ð40Þ

j1 − 1i
����
1

2
−
1

2

�
¼

����
3

2
−
3

2

�
: ð41Þ

However, when we create the m ¼ � 1

2
states, we create a

mixture of J ¼ 3

2
and J ¼ 1

2
states,

j1 þ 1i
����
1

2
−
1

2

�
¼

ffiffiffi
1

3

r ����
3

2
þ 1

2

�
þ

ffiffiffi
2

3

r ����
1

2
þ 1

2

�
; ð42Þ

j1 − 1i
����
1

2
þ 1

2

�
¼

ffiffiffi
1

3

r ����
3

2
−
1

2

�
−

ffiffiffi
2

3

r ����
1

2
−
1

2

�
: ð43Þ

In principle, it is possible to project onto definite J ¼ 3

2
, 1
2

states (see [35]). However, we note that the J ¼ 1

2
, Δð1750Þ

state has a higher mass than the J ¼ 3

2
, Δð1232Þ state, and

so we expect the Δð1232Þ to saturate the ground state at

large Euclidean time, although there is the possibility of

slightly more excited-state contamination than in the

m ¼ � 3

2
cases.

Figure 5 shows results for the energy shift of the Δ

baryon with λ. Only results for the up quark are shown,

since the spin contribution for the down quark differs by a

factor of a half in the isospin-symmetric limit. In contrast to

the nucleon, all quarks in the Δ have positive contributions.

Table IV summarizes results for the decuplet baryons.

Results at the heavier pion mass for the m ¼ � 1

2
states are

unavailable, as the code to calculate these was not imple-

mented at the time of those initial runs. Note that the

distinction between the two different quark flavor spin

contributions is a result of the form of the interpolating

operator. So for example, the overall strange connected

contribution to the Ω baryon, Δs
3

2
m ¼ Δq1

3

2
m þ Δq2

3

2
m.

Similarly to the results for the octet baryons in Table III,

we see the effect of the changing quark masses on the axial

charges. We observe the same pattern of environmental

sensitivity as was evident when comparing the nucleon and

Ξ away from the SU(3) symmetric point; the heavier

FIG. 4 (color online). Energy shift of the Λ baryon with respect

to λ. κl ¼ 0.121040, κs ¼ 0.120620.
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strange quark lowers the light quark contribution. For the

zeroth moment [26],

Δq
3

2

3

2 ¼ 3Δq
3

2

1

2: ð44Þ
Comparing results for the m ¼ � 1

2
, � 3

2
states in Table IV,

we see broad agreement with the sum rule.

Using the preliminary renormalization factor in Eq. (10),

we have for the Δ baryon at the lighter pion mass of around

360 MeV,

Δu
3

2

3

2

conn þ Δd
3

2

3

2

conn ¼ 1.682ð61Þ; ð45Þ
which compares well to results from [36] at a pion mass of

297(5) MeV,

Δu
3

2

3

2

conn þ Δd
3

2

3

2

conn ¼ 1.81ð11Þ: ð46Þ

C. Vector mesons (J ¼ 1)

For the vector mesons, we make use of the interpolating

operator

Ovector ¼ q̄2γ�q1; ð47Þ

where again appropriate quark flavors are substituted to

access the different meson states.

Figure 6 shows results for the K� meson. We see that

both quark flavors have positive contributions, and observe

the slightly larger contribution from the strange quark.

Table V summarizes results for the vector mesons.

We find relatively little change in the quark axial charges

in the ρ at the different quark masses (consistent with

results reported in [37]). We do see a similar environmental

sensitivity as in the octet and decuplet away from the SU(3)

symmetric point. For example the strange spin contribution

to the K� is greater than that for the ϕ due to the presence of

the light quark in the K�.
For the ρ meson at the lighter pion mass of around

360 MeV, we have for the light spin contribution, using the

preliminary renormalization in Eq. (10),

Δu11conn þ Δd11conn ¼ 1.311ð64Þ; ð48Þ

FIG. 5 (color online). Energy shift of Δ
þ with respect to λ

parameter on the κl ¼ 0.121040, κs ¼ 0.120620 ensemble. Only

results for the up quark are shown (Results for the down quark

differ by a factor of a half).

TABLE IV. Table of connected spin contributions for the

baryon decuplet. q1 and q2 are as they appear in the interpolating
operator (38).

κl 0.120900 0.121040

κs 0.120900 0.120620

Δq1
latt
conn Δq2

latt
conn Δq1

latt
conn Δq2

latt
conn.

Δðm ¼ � 3

2
Þ 1.364(29) 0.682(15) 1.319(48) 0.660(24)

Σ
�ðm ¼ � 3

2
Þ 1.364(29) 0.682(15) 1.310(43) 0.727(11)

Ξ�ðm ¼ � 3

2
Þ 1.364(29) 0.682(15) 1.448(19) 0.654(20)

Ωðm ¼ � 3

2
Þ 1.364(29) 0.682(15) 1.437(16) 0.718(8)

Δðm ¼ � 1

2
Þ � � � � � � 0.437(36) 0.215(18)

Σ
�ðm ¼ � 1

2
Þ � � � � � � 0.441(31) 0.244(9)

Ξ�ðm ¼ � 1

2
Þ � � � � � � 0.506(14) 0.215(14)

Ωðm ¼ � 1

2
Þ � � � � � � 0.504(12) 0.248(6)

FIG. 6 (color online). Energy shift of K� with respect to λ

parameter on κl ¼ 0.121040, κs ¼ 0.120620 ensemble.

TABLE V. Table of connected spin contributions for the vector

mesons. q1 refers to the first flavor in Eq. (47), and q2 to the

second.

κl 0.120900 0.121040

κs 0.120900 0.120620

Δq1
latt
conn Δq2

latt
conn Δq1

latt
conn Δq2

latt
conn.

ρ 0.762(14) 0.762(14) 0.771(33) 0.771(33)

K� 0.762(14) 0.762(14) 0.738(22) 0.821(15)

ϕ 0.762(14) 0.762(14) 0.793(11) 0.793(11)
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noting that the results quoted in Table V are for each light

quark individually. Again, this calculation is rare in the

literature. Ref. [37] quotes a value, after chiral extrapolation

of quenched results, of

Δu11conn þ Δd11conn ¼ 1.180ð92Þ; ð49Þ

where we see broad agreement with our results.

D. Summary

In order to compare the relative contributions of quarks

to the spin of the different hadrons, we define the quark spin

fraction for a spin-J hadron to be

cΔΣJ ¼ ΔΣ
J

2J
: ð50Þ

Figure 7 shows cΔΣJ
conn at different pion masses for all the

baryons and mesons we have examined, renormalized

using Eq. (10). Noting that the singlet quark mass is

constant along our trajectory, we see that hadrons with

dominant strange quark contributions have been shifted up

with the increased strange mass, and hadrons with dom-

inant light quark contributions have shifted down. We also

see that the quark spin fraction for all the baryons studied

here is in the range 55%–70%.

VI. CONCLUDING REMARKS

We have demonstrated that the Feynman-Hellmann

method is an effective approach to calculating hadron

matrix elements. We have demonstrated this through the

determination of quark spin contributions to hadrons.

With the statistical improvements gained by examining

hadron energy shifts, our calculations are able to achieve

comparable precision to standard three-point function

methods, with an equivalent computational investment. It

is also possible that the Feynman-Hellmann method is less

susceptible to excited-state contamination than these meth-

ods, a current point of debate within the lattice community.

We have also shown how the Feynman-Hellmann

method may be most efficiently applied. In particular, it

appears that only a couple of different background field

strengths need be realized in order to make an accurate

and precise calculation. Weaker field strengths give more

tightly constrained fit parameters, and introduce less noise

to correlation functions.

Our findings indicate that the possible application of

the Feynman-Hellmann method to the calculation of such

quantities as the disconnected quark spin contributions of

hadrons is extremely promising. These simulations will

require generating separate sets of gauge field configura-

tions and a significant investment of computational time.

However, the possibility of accessing such matrix elements

so simply and with minimal excited-state contamination is

extremely promising.
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APPENDIX: A THE FEYNMAN-HELLMANN

THEOREM

Deriving the Feynman-Hellmann theorem in a field-

theoretic sense is slightly different to the standard quantum

mechanical approach found in textbooks. There are some

constructions that must first be introduced, and we proceed

by examining both two-point and three-point correlation

functions.

1. Lattice correlation functions

We begin our discussion with the standard definitions of

lattice two-point and three-point functions. Suppose,

FIG. 7 (color online). The quark spin fraction cΔΣJ
conn as defined

in Eq. (50) for all the octet and decuplet baryons, and vector

mesons, for different pion masses, renormalized using Eq. (10).

A. J. CHAMBERS et al. PHYSICAL REVIEW D 90, 014510 (2014)

014510-10



without loss of generality, that we have chosen χ̄ and χ as

creation and annihilation operators for some hadron, such

as the nucleon. For the Fourier transformed two-point

function we have

Z
d3xe−i

~k·~xhχð~x; tÞχ̄ð0Þi ¼
X

n

e−Enð~kÞt

2Enð~kÞ
jhΩjχð0Þjn; ~kij2;

ðA1Þ

where the right-hand side includes a sum over the excited

states created by the chosen operators, and jΩi denotes the
vacuum. This expression may be obtained using transfer

matrix methods. At large Euclidean times, the summation is

dominated by the ground state contribution,

Z
d3~xe−i

~k·~xhχð~x; tÞχ̄ð0Þi→large t e
−E0ð~kÞt

2E0ð~kÞ
jhΩjχð0Þj0; ~kij2:

ðA2Þ

For the Fourier-transformed three-point function, we have

Z
d3~xd3~ye−i

~k·~xhχð~x; tÞOð~y; τÞχ̄ð0Þi

¼
X

n;m

e−Enð~kÞðt−τÞ

2Enð~kÞ
e−Emð~kÞτ

2Emð~kÞ
hΩjχð0Þjn; ~ki

× hn; ~kjOð0Þjm; ~kihm; ~kjχ̄ð0ÞjΩi; ðA3Þ

where we constrain ourselves here to the special case of

zero momentum transfer between initial and final states.

Integrating both sides of this expression with respect to τ,

we have

Z
t

0

dτ

Z
d3~xd3~ye−i

~k·~xhχð~x; tÞOð~y; τÞχ̄ð0Þi

¼
X

n;m

e−Emð~kÞt − e−Enð~kÞt

4Enð~kÞEmð~kÞðEnð~kÞ − Emð~kÞÞ
× hΩjχð0Þjn; ~kihn; ~kjOð0Þjm; ~kihm; ~kjχ̄ð0ÞjΩi:

ðA4Þ

Now consider the large t behavior of the right-hand side of

this equation. When we expand the sums over n and m, the

dominant terms at large t will be those with the lowest

values of En and Em, when n ¼ m ¼ 0. However, note that

when En ¼ Em, the right-hand side is ill defined. So we

first take the limit as Em → En using l’Hôpital’s rule.

Dropping explicit momentum dependence momentarily,

we have that

lim
Em→En

e−Emt − e−Ent

4EnEmðEn − EmÞ
¼ te−Ent

4E2
n

: ðA5Þ

The large t behavior of Eq. (A4) is then given by

Z
t

0

dτ

Z
d3~xd3~ye−i

~k·~xhχð~x; tÞOð~y; τÞχ̄ð0Þi

→

large t te−EHð~kÞt

4E2
Hð~kÞ

jhΩjχð0ÞjH; ~kij2hH; ~kjOð0ÞjH; ~ki;

ðA6Þ

where we denote the ground state of our hadron as jH; ~ki
and its energy to be EH

2. The Feynman-Hellmann theorem

We now proceed with a proof of the Feynman-Hellmann

theorem, expanding upon a proof presented in [14].

Suppose that we modify the action S of our theory in

some way, such that it now depends on some parameter λ,

S→ SðλÞ: ðA7Þ

Consider the two-point correlation function discussed in

the previous section. In the path integral formalism, this

correlator is given by

hχð~x; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DADψDψ̄χð~x; tÞχ̄ð0Þe−SðλÞ;

ðA8Þ

where the subscript λ indicates that the correlator is to be

evaluated with respect to the modified action, and we note

that the partition function is now also a function of λ,

ZðλÞ ¼
Z

DADψDψ̄e−SðλÞ: ðA9Þ

Taking the derivative with respect to λ of both sides of

Eq. (A8), it is straightforward to show that

∂

∂λ
hχð~x; tÞχ̄ð0Þiλ ¼

�
∂SðλÞ
∂λ

�

λ

hχð~x; tÞχ̄ð0Þiλ

−

�
χð~x; tÞ ∂SðλÞ

∂λ
χ̄ð0Þ

�

λ

; ðA10Þ

noting that angular brackets here denote expectation values

as given in the path-integral formalism, analagous to

Eq. (A8),

hOi ¼ 1

Z

Z
DADψDψ̄Oe−S: ðA11Þ

Fourier transforming both sides of Eq. (A10) and

re-arranging terms, we obtain the expression
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�
∂

∂λ
−

�
∂SðλÞ
∂λ

�

λ

�Z
d3~xe−i

~k·~xhχð~x; tÞχ̄ð0Þiλ

¼ −

Z
d3~xe−i

~k·~x

�
χð~x; tÞ ∂SðλÞ

∂λ
χ̄ð0Þ

�

λ

: ðA12Þ

Consider the first term on the left-hand side of this

expression. We have a derivative with respect to λ of the

two-point correlator from Appendix A 1. Since our action

now depends on the parameter λ, we have

Z
d3xe−i

~k·~xhχð~x; tÞχ̄ð0Þiλ

¼
X

n

e−Enð~k;λÞt

2Enð~k; λÞ
jhΩjχð0Þjn; ~kiλj2; ðA13Þ

noting that the energy eigenvalues and amplitudes both

depend on λ. In deriving this expression, we required that

the vacuum state has zero energy. We note that in

modifying our action, we may have shifted our vacuum

energy to a nonzero value (for instance, if our modification

to the action took the form of the operator λq̄q for some

parameter λ). However, we will assume that this is not the

case, as the modifications we make to the action in the main

body of the paper, namely the inclusion of the axial

operator q̄iγμγ5q, do not shift the vacuum energy. We

can calculate the derivative with respect to λ of Eq. (A13),

∂

∂λ

Z
d3xe−i

~k·~xhχð~x; tÞχ̄ð0Þiλ

¼
X

n

e−Enð~k;λÞt

2Enð~k; λÞ

�
−

�
tþ 1

Enð~k; λÞ

�
∂Enð~k; λÞ

∂λ
þ ∂

∂λ

�

× jhΩjχð0Þjn; ~kiλj2: ðA14Þ

At large Euclidean times, the lowest energy state in the

summation above will dominate the summation, and the

term with linear time dependence will dominate the second

and third terms. Hence we have

∂

∂λ

Z
d3xe−i

~k·~xhχð~x; tÞχ̄ð0Þiλ

→

large t
−
∂EHð~k; λÞ

∂λ

te−EHð~k;λÞt

2EHð~k; λÞ
jhΩjχð0ÞjH; ~kiλj2: ðA15Þ

Next, consider the second term on the left-hand side of

Eq. (A12),

�
∂SðλÞ
∂λ

�

λ

Z
d3~xe−i

~k·~xhχð~x; tÞχ̄ð0Þiλ: ðA16Þ

The very first quantity is just a vacuum expectation value,

and assuming that the modification of S does not carry

vacuum quantum numbers (to leading order in λ), this

contribution will vanish. Finally, consider the term on the

right-hand side of Eq. (A12),

Z
d3~xe−i

~k·~x

�
χð~x; tÞ ∂SðλÞ

∂λ
χ̄ð0Þ

�

λ

: ðA17Þ

Defining the operator O such that

Z
dτ

Z
d3~yOð~y; τÞ ¼ ∂SðλÞ

∂λ
; ðA18Þ

we have exactly the three-point correlator described by

Eq. (A6), noting however that the energies and amplitudes

now have explicit λ dependence. We also point out that

while the implementation of the operator is made across the

whole lattice, the correlation function will only receive a

significant contribution between 0 and t. Hence, we restrict
the τ integration to this domain, and have

Z
t

0

dτ

Z
d3~xd3~ye−i

~k·~xhχð~x; tÞOð~y; τÞχ̄ð0Þiλ

→

large t te−EHð~k;λÞt

4E2
Hð~k; λÞ

jhΩjχð0ÞjH; ~kiλj2hH; ~kjOð0ÞjH; ~kiλ:

ðA19Þ

As above, we again assume the modification to the action

has not shifted the vacuum energy. So starting from

Eq. (A12) and taking the behavior at large t on both sides,

substituting in Eqs. (A15) and (A19) we have

−
∂Eð~k; λÞ

∂λ

te−EHð~k;λÞt

2EHð~k; λÞ
jhΩjχð0ÞjH; ~kiλj2

¼ −
te−EHð~k;λÞt

4E2
Hð~k; λÞ

jhΩjχð0ÞjH; ~kiλj2hH; ~kjOð0ÞjH; ~kiλ:

ðA20Þ

Canceling various factors, we obtain

∂EHð~k; λÞ
∂λ

¼ 1

2EHð~k; λÞ
hH; ~kjOð0ÞjH; ~kiλ: ðA21Þ

We can generalize this result to any hadron for which we

can choose suitable interpolating operators. Additionally,

the origin 0 was taken only as a convenient reference point.

So in general for any hadron state jHi, we have

∂EHðλÞ
∂λ

¼ 1

2EHðλÞ
hHjOjHiλ: ðA22Þ

This is our expression for the Feynman-Hellmann

theorem in the context of field theory.
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