000201119 001__ 201119
000201119 005__ 20240625085651.0
000201119 0247_ $$2doi$$a10.1016/j.physletb.2014.03.002
000201119 0247_ $$2ISSN$$a0370-2693
000201119 0247_ $$2ISSN$$a1873-2445
000201119 0247_ $$2Handle$$a2128/8776
000201119 0247_ $$2WOS$$aWOS:000335307900006
000201119 0247_ $$2altmetric$$aaltmetric:6584663
000201119 037__ $$aFZJ-2015-03424
000201119 082__ $$a530
000201119 1001_ $$0P:(DE-HGF)0$$aHorsley, R.$$b0
000201119 245__ $$aNucleon axial charge and pion decay constant from two-flavor lattice QCD
000201119 260__ $$aAmsterdam$$bNorth-Holland Publ.$$c2014
000201119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433942347_12156
000201119 3367_ $$2DataCite$$aOutput Types/Journal article
000201119 3367_ $$00$$2EndNote$$aJournal Article
000201119 3367_ $$2BibTeX$$aARTICLE
000201119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201119 3367_ $$2DRIVER$$aarticle
000201119 520__ $$aThe axial charge of the nucleon gAgA and the pion decay constant fπfπ are computed in two-flavor lattice QCD. The simulations are carried out on lattices of various volumes and lattice spacings. Results are reported for pion masses as low as mπ=130 MeVmπ=130 MeV. Both quantities, gAgA and fπfπ, suffer from large finite size effects, which to leading order ChEFT and ChPT turn out to be identical. By considering the naturally renormalized ratio gA/fπgA/fπ, we observe a universal behavior as a function of decreasing quark mass. From extrapolating the ratio to the physical point, we find View the MathML sourcegAR=1.29(5)(3), using the physical value of fπfπ as input and r0=0.50(1)r0=0.50(1) to set the scale. In a subsequent calculation we attempt to extrapolate gAgA and fπfπ separately to the infinite volume. Both volume and quark mass dependencies of gAgA and fπfπ are found to be well described by ChEFT and ChPT. We find at the physical point View the MathML sourcegAR=1.24(4) and View the MathML sourcefπR=89.6(1.1)(1.8) MeV. Both sets of results are in good agreement with experiment. As a by-product we obtain the low-energy constant View the MathML sourcel¯4=4.2(1).
000201119 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000201119 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201119 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b1
000201119 7001_ $$0P:(DE-Juel1)145828$$aNobile, A.$$b2$$ufzj
000201119 7001_ $$0P:(DE-HGF)0$$aRakow, P. E. L.$$b3
000201119 7001_ $$0P:(DE-HGF)0$$aSchierholz, G.$$b4$$eCorresponding Author
000201119 7001_ $$0P:(DE-HGF)0$$aZanotti, J. M.$$b5
000201119 773__ $$0PERI:(DE-600)1466612-1$$a10.1016/j.physletb.2014.03.002$$gVol. 732, p. 41 - 48$$p41 - 48$$tPhysics letters / B$$v732$$x0370-2693$$y2014
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.pdf$$yOpenAccess
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.gif?subformat=icon$$xicon$$yOpenAccess
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201119 8564_ $$uhttps://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201119 909CO $$ooai:juser.fz-juelich.de:201119$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000201119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145828$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201119 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000201119 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000201119 9141_ $$y2015
000201119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201119 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201119 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201119 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201119 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201119 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000201119 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000201119 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000201119 9801_ $$aFullTexts
000201119 980__ $$ajournal
000201119 980__ $$aVDB
000201119 980__ $$aFullTexts
000201119 980__ $$aUNRESTRICTED
000201119 980__ $$aI:(DE-Juel1)JSC-20090406
000201119 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201119 981__ $$aI:(DE-Juel1)PGI-1-20110106
000201119 981__ $$aI:(DE-Juel1)IAS-1-20090406