001     201119
005     20240625085651.0
024 7 _ |a 10.1016/j.physletb.2014.03.002
|2 doi
024 7 _ |a 0370-2693
|2 ISSN
024 7 _ |a 1873-2445
|2 ISSN
024 7 _ |a 2128/8776
|2 Handle
024 7 _ |a WOS:000335307900006
|2 WOS
024 7 _ |a altmetric:6584663
|2 altmetric
037 _ _ |a FZJ-2015-03424
082 _ _ |a 530
100 1 _ |a Horsley, R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nucleon axial charge and pion decay constant from two-flavor lattice QCD
260 _ _ |a Amsterdam
|c 2014
|b North-Holland Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433942347_12156
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The axial charge of the nucleon gAgA and the pion decay constant fπfπ are computed in two-flavor lattice QCD. The simulations are carried out on lattices of various volumes and lattice spacings. Results are reported for pion masses as low as mπ=130 MeVmπ=130 MeV. Both quantities, gAgA and fπfπ, suffer from large finite size effects, which to leading order ChEFT and ChPT turn out to be identical. By considering the naturally renormalized ratio gA/fπgA/fπ, we observe a universal behavior as a function of decreasing quark mass. From extrapolating the ratio to the physical point, we find View the MathML sourcegAR=1.29(5)(3), using the physical value of fπfπ as input and r0=0.50(1)r0=0.50(1) to set the scale. In a subsequent calculation we attempt to extrapolate gAgA and fπfπ separately to the infinite volume. Both volume and quark mass dependencies of gAgA and fπfπ are found to be well described by ChEFT and ChPT. We find at the physical point View the MathML sourcegAR=1.24(4) and View the MathML sourcefπR=89.6(1.1)(1.8) MeV. Both sets of results are in good agreement with experiment. As a by-product we obtain the low-energy constant View the MathML sourcel¯4=4.2(1).
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Nakamura, Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nobile, A.
|0 P:(DE-Juel1)145828
|b 2
|u fzj
700 1 _ |a Rakow, P. E. L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schierholz, G.
|0 P:(DE-HGF)0
|b 4
|e Corresponding Author
700 1 _ |a Zanotti, J. M.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.physletb.2014.03.002
|g Vol. 732, p. 41 - 48
|0 PERI:(DE-600)1466612-1
|p 41 - 48
|t Physics letters / B
|v 732
|y 2014
|x 0370-2693
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201119/files/1-s2.0-S0370269314001579-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201119
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145828
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21