001     201123
005     20250314084112.0
024 7 _ |a 10.3233/SPR-140393
|2 doi
024 7 _ |a WOS:000340647100003
|2 WOS
024 7 _ |a 2128/25413
|2 Handle
037 _ _ |a FZJ-2015-03428
082 _ _ |a 070
100 1 _ |a Schöne, Robert
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Tools and methods for measuring and tuning the energy efficiency of HPC systems
260 _ _ |c 2014
|b IOS Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433945754_12150
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy costs nowadays represent a significant share of the total costs of ownership of High Performance Computing (HPC) systems. In this paper we provide an overview on different aspects of energy efficiency measurement and optimization. This includes metrics that define energy efficiency and a description of common power and energy measurement tools. We discuss performance measurement and analysis suites that use these tools and provide users the possibility to analyze energy efficiency weaknesses in their code. We also demonstrate how the obtained power and performance data can be used to locate inefficient resource usage or to create a model to predict optimal operation points. We further present interfaces in these suites that allow an automated tuning for energy efficiency and how these interfaces are used. We finally discuss how a hard power limit will change our view on energy efficient HPC in the future.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
700 1 _ |a Treibig, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dolz, Manuel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guillen, Carla
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Navarrete, Carmen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Knobloch, Michael
|0 P:(DE-Juel1)132163
|b 5
|u fzj
700 1 _ |a Rountree, Barry
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.3233/SPR-140393
|0 PERI:(DE-600)2070004-0
|n 4
|p 273–283
|t Scientific programming
|v 22
|y 2014
|x 1058-9244
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201123/files/spr_2014_22-4_SPR393.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201123/files/spr_2014_22-4_SPR393.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201123
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132163
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21