
Scientific Programming 22 (2014) 273–283 273
DOI 10.3233/SPR-140393
IOS Press

Tools and methods for measuring and tuning
the energy efficiency of HPC systems

Robert Schöne a,∗, Jan Treibig b, Manuel F. Dolz c, Carla Guillen d, Carmen Navarrete d,
Michael Knobloch e and Barry Rountree f

a Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden,
Dresden, Germany
E-mail: robert.schoene@tu-dresden.de
b Erlangen Regional Computing Center, University Erlangen-Nuremberg, Erlangen, Germany
E-mail: jan.treibig@fau.de
c Department of Informatics, Universität Hamburg, Hamburg, Germany
E-mail: manuel.dolz@informatik.uni-hamburg.de
d Leibniz Rechenzentrum (LRZ) Bayerischen Akademie der Wissenschaften, München, Germany
E-mails: {carla.guillen, carmen.navarrete}@lrz.de
e Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
E-mail: m.knobloch@fz-juelich.de
f Center for Applied Scientific Computation, Lawrence Livermore National Laboratory, Livermore, CA, USA
E-mail: rountree@llnl.gov

Abstract. Energy costs nowadays represent a significant share of the total costs of ownership of High Performance Computing
(HPC) systems. In this paper we provide an overview on different aspects of energy efficiency measurement and optimization.
This includes metrics that define energy efficiency and a description of common power and energy measurement tools. We discuss
performance measurement and analysis suites that use these tools and provide users the possibility to analyze energy efficiency
weaknesses in their code. We also demonstrate how the obtained power and performance data can be used to locate inefficient
resource usage or to create a model to predict optimal operation points. We further present interfaces in these suites that allow an
automated tuning for energy efficiency and how these interfaces are used. We finally discuss how a hard power limit will change
our view on energy efficient HPC in the future.

Keywords: Energy efficiency, energy and performance measurement, HPC, high performance computing, energy optimization
tools, energy models, energy-efficiency tuning

1. Introduction to energy efficiency considerations
in HPC

Within the last decade, energy costs of High Perfor-
mance Computing (HPC) systems have significantly
increased and now represent a significant share of the
total cost of ownership (TCO) of such a system. Thus,
servers and HPC systems are now not only evaluated
in terms of throughput, but also in terms of energy ef-
ficiency as a second major requirement. In order to

*Corresponding author: Robert Schöne, Center for Informa-
tion Services and High Performance Computing (ZIH), Tech-
nische Universität Dresden, 01062 Dresden, Germany. E-mail:
robert.schoene@tu-dresden.de.

improve energy efficiency, research and developments
targeting a lower power consumption have intensified
with the ultimate goal to reach a maximum through-
put within a given energy budget. The developments
include the addition of hardware and operating sys-
tem support for energy efficient operation in proces-
sors, node devices and memory. Current HPC systems
are built from components with this kind of energy ef-
ficiency support and provide interfaces to control them.
However, tuning energy efficiency is still a matter of
research. HPC poses additional challenges regarding
energy efficiency, as the impact on performance has
to be very low in order to be acceptable. Higher per-
formance and low power consumption are contradic-
tory when a decrease in power consumption results in a

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

274 R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems

longer execution time. Still, more and more HPC cen-
ters use the facilities to manipulate the energy con-
sumption of applications e.g., by reducing the pro-
cessor voltage and frequency. To find an optimal bal-
ance between energy efficiency and high performance
of computations, hardware and software characteristics
have to be taken into account.

The field of power and energy consumption analy-
sis of HPC systems and applications is currently dom-
inated by administrators and researchers, with very
few application developers caring about these top-
ics. However, with more and more HPC systems pro-
viding power measurement capabilities, HPC centers
are able to switch from a CPU hour based allocation
of resources to an allocation and accounting scheme
that also reflects power bounds and electricity costs.
Energy-aware scheduling has been detailed in [24,49,
50] and is already supported by LoadLeveler [5]. Thus,
in the near future all users of HPC systems might have
to deal with energy efficiency, for which we provide an
overview on several key areas.

The rest of the paper is organized as follows. We
discuss several energy-efficiency metrics for both HPC
systems and applications in Section 2. To complement
the discussion on the basic steps prior to tuning, we
provide guidelines for the choice of power measure-
ment tools and interfaces in Section 3 and Section 4.
The inclusion of performance and energy data into ex-
isting performance measurement infrastructures is de-
scribed in Section 5. The paper is enriched with the il-
lustration of an energy model that describes how the
usage of power saving mechanisms influences perfor-
mance and energy-efficiency in Section 6. We present
tuning approaches and the integration of tuning cycles
in performance analysis tools in Section 7. We close
this paper with an outlook to the upcoming challenge
of optimizing performance under a constant power
consumption in Section 8 and provide a summary and
outlook in Section 9.

2. Energy efficiency metrics

As in every optimization process, energy efficiency
optimizations are highly influenced by the applied per-
formance metric. While traditional performance met-
rics focus solely on throughput (e.g., FLOPS, IPC,
MB/s), energy efficiency metrics focus on a trade-off
between throughput (i.e., runtime) and energy costs
(i.e., consumed energy). In this section, we discuss
the most prominent metrics, the reader needs to know
when interpreting energy-efficiency-performance data.

In HPC, the most common and known metric is
FLOPS/W and depicts how efficient a system can exe-
cute the LINPACK benchmark, which is known to be
very energy intensive. This metric is associated with
the Green500 list [14] that was announced to accom-
pany the established TOP500 list [13]. A major draw-
back of using LINPACK as the only benchmark case is
that it does not reflect the typical workload of produc-
tion HPC systems. The SPEC OMP2012 [33] bench-
marks allow to accompany performance results with
power and energy information. SPEC provides an in-
frastructure to measure the power consumption and de-
fines measurement rules and certified watt-meters to
avoid the submission of inaccurate results.

Energy-to-solution is an established metric to quan-
tify the energy efficiency on a system for a specific
code solving a specific problem. However, this metric
only reflects the energy budget of running the appli-
cation. The aim to either increase throughput within
a given energy budget or reduce energy for a given
throughput is not reflected. Thus, other metrics empha-
size both runtime and energy consumption of an appli-
cation. One metric in this context is the energy-delay
product (EDP) introduced in 1994 [21]. It presents a
compromise between low power and high performance
and is well suited to guide research efforts. For scenar-
ios where performance is even more important, the de-
lay part may be emphasized by using an EDnP met-
ric [10], often ED2P is used, or the generalized FTTSE
metric [9], where an arbitrary function defines the ratio
of performance and energy consumption.

In a computing center context though, energy effi-
ciency is only one of the requirements. Additional con-
straints may be maximum power capping or constant
power consumption with only small perturbation. If
those constraints are met, a power supplier can often
provide a significantly lower price, thus increasing the
efficiency in terms of TCO. In Section 8 we discuss the
challenges that arise with such a hard power bound.

3. Measuring power and energy

Prior to tuning energy consumption, researchers
have to select an appropriate measuring tool with
the required spatial and temporal granularity. In this
section we discuss different solutions for measuring
power and energy, accompanied by an overview of ad-
vantages and shortcomings for possible use cases. The
following devices present an overview from finer to
coarser spatial granularities of common power mea-
surement alternatives.

R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems 275

RAPL [37], APM [26], and various performance
counter based approaches (e.g. [11,18,25,43]) imple-
ment power consumption or energy consumption mod-
els based on processor events in hardware or software.
One advantages of using such a model is the high
update frequency (e.g., 1 kHz for RAPL), which is
suitable for understanding the behavior of short code
paths. However, there are several disadvantages when
using processor event counters. These include for ex-
ample measurement overhead due to the in-band mea-
surement and model inaccuracies.

Power meter toolkits also allow measurements of
fine granular devices such as CPU, disk, or different
voltage lanes with dedicated current or power sensors.
Examples of tools interfacing such sensors are Pow-
erPack [15], PowerMon [8] and Amester [27]. High
measurement frequencies of up to 1 kHz make them
appropriate for code paths instrumentation and longer
running applications. One disadvantage reported by
Diouri et al. [12] are the differences in the accuracy of
the measurements (more than 50% variation). The pa-
per concludes that these tools require careful calibra-
tion.

At node level, common interfaces include paddle
cards and power supply units (PSU) that provide Intel-
ligent Platform Management Interface (IPMI) sensors.
The temporal granularity is mostly within the range of
1–10 Hz [19,22]. Thus, they can only be used to cre-
ate statistical profiles for long running applications, but
will fail to examine short code paths. Hackenberg et
al. [19] report accurate results from IPMI PSU mea-
surements for constant power consumption scenarios.
However, they also show that such sensors can be inac-
curate if the running workflow provides a high power
fluctuation.

There are “smart” Power Distribution Units (PDUs)
which also feature a built-in powermeter circuitry ca-
pable of reporting out-bound measurements of instan-
taneous power via IPMI. These PDUs usually allow
power readings on node level, rack level, or for the net-
working equipment. Typically, the queries can be done
at the scale of seconds [19] or minutes [35]. Due to
the low temporal resolution, they are only useful for
obtaining statistical information.

Due to the diversity of tools, we only provide an
overview. If one targets to lower the energy consump-
tion of a specific component (e.g., main memory, CPU,
or accelerator card) or a certain code-path, a fine
grained instrumentation should be chosen. To verify
optimizations at application level, the power should be
measured at least at node level. The most important

considerations when choosing a power measurement
infrastructure include accuracy, and requirements on
time and spatial resolutions.

4. Energy-efficiency related performance data

Measuring the power consumption is not necessar-
ily sufficient to analyze applications and systems. To
explain why and where a certain amount of energy
has been spent when running an application, additional
data is necessary. A low power consumption, for ex-
ample, can be achieved by using a low frequency, but it
could also be caused by the use of idle states, thermal
throttling, or instructions that use less power. A high
power consumption of a computing node can result
from an intense use of an accelerator or the processor.
Thus, the first step is to obtain additional data to under-
stand the reasons for a certain power level and in the
next step to lower the energy consumption.

Different aspects influence the power consumption
of processors. These include the ACPI standardized
P-, C-, and T-states [2], utilization of execution units
and data transfers [32], and the clock gating of differ-
ent parts of processors and processor cores [26]. While
some of them are transparent (small scale clock gat-
ing), others can be observed via software and hard-
ware counters. P-States that refer to voltage and fre-
quency changes can be observed via instrumentation
on methods that issue a change [39], via hardware per-
formance monitoring units (PMUs) or special model
specific registers (MSRs) like APERF and MPERF on
newer x86 processors. C-States that implement idle-
states can also be measured via instrumentation [39]
and specialized MSRs [7] (residency counters). On re-
cent Intel and AMD processors, T-States that refer to a
processor throttling due to thermal constraints can be
measured via MSRs as well as the temperature of com-
puting cores. The Linux operating system allows to ac-
cess most of this information in terms of special virtual
file systems as sysfs and procfs.

C-States for example are measured on a per CPU
base where each C-state issue is counted. Statistics
about the C-state usage are reported in the sysfs on a
per-CPU base. Due to C-state undemotion these num-
bers are, however, not entirely correct but represent
only the issued C-states, not the ones that were actually
initiated by hardware. Access to the hardware informa-
tion is provided by residency counters [23] that can be
accessed via the msr kernel module. A higher level of

276 R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems

abstraction provides the powertop tool that provides
statistics based on MSR readings.

Data transfers and computations in processor cores
influence the power consumption to a high degree [32].
Many relevant performance events about processor
core and cache activities and can be extracted from the
hardware PMUs available on all modern processors.
PMU counters that define activities within a processor
core are often available per core or per thread (if si-
multaneous multi threading is active). Counters related
to shared parts of the chip (often referred to as uncore
by Intel or northbridge by AMD) require to program
special PMUs which are valid on a per chip scope. To
access the PMU data hardware performance monitor-
ing tools like perf (included in the Linux kernel) or
LIKWID [46] may be used.

5. Performance analysis tools and energy
efficiency metrics integration

In the previous section we described how one can
measure energy and performance related metrics. In
this section, we present current state-of-the-art HPC
performance analysis tools that integrate such informa-
tion. These tools allow the measurement and compar-
ison of the energy efficiency of parallel applications
and relate energy information with performance data.
Thus, they allow performance analysts to understand
the reasons for an inefficient or efficiency energy con-
sumption and what bottlenecks different application
regions (e.g., subroutine calls) face.

A common way to observe the resource usage of
an application is using hardware performance counters
like floating-point instructions or cache misses via an
interface like PAPI [44]. Most common HPC perfor-
mance measurement tools (e.g., [1,16,17,29,30,36,40,
42,46]) allow performance counter measurements at a
region level or a sampling of performance counters.
As discussed in Section 2, several researchers build
power and energy models based on hardware counters
which would allow to estimate the energy consump-
tion of such software regions. However, performance
counter based models have to be determined for every
new hardware generation and even for each processor
or processor core due to process variation which can
be unfeasible. Thus, to support power and energy mea-
surements the performance tools need to include sup-
port for power meters and relevant data.

Instrumentation-based tracing tools record all events
in an application (e.g. function enter/exit, MPI commu-
nication, etc.) and stores that in a trace file which can

be analyzed post mortem, either manually with tools
like Vampir or Paraver or automatically with Scalasca.
Tracing provides a very high overhead and generates
enormous amounts of data, especially when hardware
counters are recorded. Instrumentation-based profilers
obtain usually the same events as the tracing tools, but
aggregate them instead of storing each event.

In summary, with profiling it is possible to see how
much time was spent in a function and how often it was
called, but only with tracing is it possible to examine
each execution of the function.

5.1. Profiling-based tools

Power consumption data is often provided asyn-
chronously to the application instrumentation, thus it
can not necessarily be related to a certain code region.
Additionally the power measurement is often imple-
mented out-of-band to avoid interfering with the per-
formance measurement. In such a case, power data is
collected after the instrumented application finishes its
execution. While this post-mortem integration is not
necessarily a problem for tracing, it is for profiling.

Ideally, profiling tools access energy counters. These
counters integrate the power data transparently to the
measurement system and return the energy consump-
tion between two measurement points. However, only
few systems provide such an interface. Intel’s RAPL
interface that we discussed in Section 3 can be a so-
lution for systems with Intel processors even though
it is limited [19]. The alternative would be a power
measurement sampling between the two measurement
points by the tools and an integration in software, but
this again implies an inherent overhead.

The profiling tool Periscope implements an interface
to measure energy in Sandy Bridge-EP microarchitec-
tures via the enopt library [34]. The current version
of this library allows to measure the energy consumed
at the instrumented regions of the user application.

5.2. Tracing-based tools

Tracing-based tools do not need the energy infor-
mation at runtime but can merge this information into
the trace in a post-mortem step. They also do not rely
on energy data that is provided at the same time scale
as the instrumentation points. Thus, there is a vari-
ety of tools supporting power and energy information.
Schöne et al. [39] describe an plugin counter interface
for VampirTrace [29] that can be used to include exter-
nal information in application traces. They also present
the inclusion of power relevant data, like frequency
changes, the use of idle states and power consumption.

R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems 277

Fig. 1. Vampir: Displaying power and frequency information for an
DVFS optimized execution of the MPI parallel NPB benchmark SP
on a dual-socket Sandy Bridge system. (Colors are visible in the on-
line version of the article; http://dx.doi.org/10.3233/SPR-140393.)

Figure 1 shows an example where power consump-
tion and processor frequency is plotted with applica-
tion runtime characteristics. Hackenberg et al. [19] and
Knobloch et al. [27] implement counter plug-ins in-
clude other power sources allowing for fine-grained
power measurements on IBM POWER7 hardware.

The interface for including external data into ap-
plication traces has been ported to the Score-P mea-
surement system and is included in the current release.
The Technische Universität Dresden is implementing
plug-ins for several power measurement devices so that
experiments can be performed on power-aware HPC-
systems.

Knobloch et al. [28] have analyzed the external
power information in Vampir to see that a parallel ap-
plication has shown high power consumption in MPI
routines due to active waiting, i.e. polling with highest
frequency whether the communication partner is ready.
Using this information, Scalasca has been extended to
determine the energy-saving potential in wait-states of
parallel applications. An example of such an analysis
is shown in Fig. 2. However, due to the aggregation
of the data, Scalasca requires energy consumption data
(similar to the profiling tools requirements) to perform
a meaningful analysis. With such an energy data source
available, it would be possible to determine whether it
is better to do a race-for-idle or slow down computa-
tion to reduce wait times.

Fig. 2. Scalasca: Displaying energy-saving potential (ESP) of PEPC,
a plasma physics application from JSC, on an Intel Nehalem based
cluster. The left pane shows the metric tree, here the ESP in col-
lective MPI communication. The middle pane shows the distribu-
tion of these properties on the call tree, we see that 65.1% of the
ESP is in a call to MPI_Alltoall in the tree_walk subroutine, and
on the right pane the distribution among the system tree is shown,
which indicates an equal distribution of the ESP across the nodes of
the cluster. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140393.)

Alonso et al. [4] present a framework which lever-
ages Extrae and Paraver to analyze the power con-
sumption and the energy consumption of parallel
MPI and/or multithreaded scientific applications. The
framework includes the pmlib library [6], which of-
fers a simple interface to interact with a variety of
wattmeters. Servat et al. [41] extend Extrae and Paraver
to include power consumption information into traces
from the RAPL energy model provided by current Intel
processors.

5.3. Use case: Detection of inefficient wait methods

In [7] Barreda et al. define power sinks as a disagree-
ments between the application activity and the system
power consumption during the execution. They also
present an inspection tool, based on Extrae + Paraver,
that automatically detects power sinks by conducting
a direct comparison between the application perfor-
mance trace and the C-state traces per core.

In order to illustrate the possibilities of the inspec-
tion tool, Barreda et al. use an example correspond-
ing to the concurrent solution a sparse linear system
using ILUPACK,1 a package that implements multi-
level preconditioners for general and Hermitian posi-

1http://ilupack.tu-bs.de.

278 R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems

Fig. 3. Performance (top), C-states (middle) and discrepancies (bot-
tom) trace, visualized with Paraver, for the concurrent execution of
ILUPACK. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140393.)

tive definite problems. The parallelization of this solver
for multicore platforms in [3] relies on a task parti-
tioning of the sparsity graph associated to the coeffi-
cient matrix of the system that yields a task acyclic
graph. At runtime, tasks that are ready for execution
(i.e, all dependencies are fulfilled) are added to a cen-
tralized queue. When a thread finishes its work, it polls
to check if there is a new task in this queue.

Figure 3 shows fragments of the obtained perfor-
mance and C-states traces for the parallel iterative so-
lution stage of ILUPACK on a dual socket Nehalem
system. The performance trace of the figure (top plot)
shows that initially all threads perform computations.
At regular intervals, threads wait for new tasks. The C-
state trace (middle plot) does not show any significant
variation. Thus, we can conclude that the threads per-
form a busy-wait. This is captured by the power-sink
inspector, in the power-sink trace (bottom plot), which
indicates a period where the application has performed
no useful computation, but the cores remained active.

6. Using power models to predict energy efficient
operation points

The ability to measure power enables the connec-
tion of the energy consumption to other parameters as

code characteristics, runtime settings and frequency. In
this section we describe how we can use the input from
Section 5 for a simple qualitative power model that
couples performance and energy to solution. We ap-
ply this model to the scalable dgemm benchmark. We
use the ECM-model introduced in [45] and further re-
fined and accompanied with a qualitative power model
in [20]. In addition to previous publications we present
the results by plotting energy to solution versus per-
formance. This novel visualization technique has been
introduced in [48].

The following basic assumptions go into the power
and performance model:

(1) The whole Nc-core chip dissipates a certain base-
line power W0 when powered on, which is inde-
pendent of the number of active cores and of the
clock speed.2

(2) An active core consumes a dynamic power of
W1f + W2f

2. We consider deviations from the
baseline clock frequency f0 such that f = (1 +
Δν)f0, with Δν = Δf/f0.

(3) At the baseline clock frequency, the serial code
under consideration runs at performance P0. As
long as there is no bottleneck, the performance
is linear in the number of cores used, t, and the
normalized clock speed, 1 + Δν. The latter de-
pendence will not be exactly linear if some part
of the hardware (e.g., the off-core cache) runs in
its own frequency domain. In presence of a bot-
tleneck (like, e.g., memory bandwidth), the over-
all performance with respect to t is capped by a
maximum value Proof:

P (t) = min
(
(1 + Δν)tP0,Proof

)
= min(tP0f/f0,Proof). (1)

Since time to solution is inverse performance, the en-
ergy to solution becomes

E =
W0 + (W1f +W2f

2)t
min(tP0f/f0,Proof)

. (2)

This model shows that any increase in performance (P0
or Proof) leads to proportional savings in energy to so-
lution. Performance is thus the first-order tuning pa-
rameter for minimum energy. For the measurements in

2As can be seen in Fig. 4 W0 is actually a function of the num-
ber of active cores. However, the qualitative insights from the model
remain unchanged.

R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems 279

Fig. 4. Power for dgemm using different frequencies and core counts
for single chip measurements. The filled circles are measured, the
corresponding lines are fit functions determining the model parame-
ters W0, W1 and W2. The W0 value varies from 16–23 W depend-
ing on the number of cores. This is due to the fragile fit on the left
tail as there are no measurements below 1.2 GHz and also due to
different states of all cores for different core counts. W1 had no sig-
nificant contribution and was therefore neglected on this test system.
The resulting values for W2 are shown in the inlet as function of
number of cores. The TDP for this chip is 130 W.

this paper only the chip baseline power is taken into
account neglecting any other power contribution on the
node level. For more realistic estimates it is crucial to
take into account the complete node baseline power. As
demonstrated in [20] it is possible to analytically de-
rive the frequency fopt from Eq. (2) for minimal energy
to solution:

fopt =

√
W0

W2t
. (3)

A large baseline power W0 forces a large clock fre-
quency to “get it over with” (“clock race to idle”). If
considering the overall baseline power on current com-
pute nodes (100 W on our test system) this case applies
in many cases.

For qualitative results it is sufficient to assume ap-
proximate values that reflect general region properties
known from code analysis and performance modeling
(memory-boundedness, SIMD vectorization, pipeline
utilization). For the test case covered in this paper the
parameters were measured using RAPL on a 2.7 GHz
Sandy Bridge processor. The chip power is measured
for different core counts and frequencies and W0, W1,
and W2 are determined by fitting function to the mea-
sured points. Figure 4 shows the results for dgemm, for
which on this particular chip there was a diminishing
linear factor, thus W1 was neglected. The inlet of Fig. 4

Fig. 5. Modelled power and performance. The modelled results
predict correctly the optimal frequency for minimum EDP for
dgemm. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140393.)

illustrates that the model parameter W2 is a function
of cores used per chip. Due to limited accuracy of the
function fit and influence of C states on different cores
also W0 varies with core count.

With the model parameters determined energy to so-
lution can be computed with core count and frequency
as inputs. A useful way to visualize the relation be-
tween energy to solution and performance is to plot en-
ergy to solution versus performance with the number of
cores used as a parameter within a data set for a specific
frequency. One advantage of this plot variant is that
points of constant EDP are straight lines. The targeted
operation area is in the lower right quadrant defining
the optimization space for a given code. For dgemm
Fig. 6 shows that the lowest EDP is achieved if run-
ning at the highest nominal frequency. Still the turbo
mode frequency is nearly as good in terms of EDP and
better than lower frequencies. The model provided re-
sults shown in Fig. 5 correctly predict the optimal fre-
quency setting. It enables qualitative insights in the en-
ergy to solution behavior of application codes. This
model may be used in tuning tools Section 7 to deter-
mine the optimal operating point in terms of frequency
and number of cores used surpassing solutions setting
the frequency based on simple heuristics or generic set-
tings.

7. Using performance analysis tools for
auto-tuning energy efficiency

In this section we present how performance mea-
surement infrastructures can be used to tune for en-
ergy efficiency. The advantage of combining analysis

280 R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems

Fig. 6. Measured power and performance. The dashed line shows
points of constant EDP fitted to the 2.7 GHz result with 8 cores,
which represents the optimal operating point and is predicted by
the model. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140393.)

and optimization are the reuse of the instrumentation
framework, and the traceability of the outcome of an
optimization.

One example for such an integration is Score-P. It
provides an Online Access mechanism which is en-
abled by an additional user instrumentation to the ap-
plication that should be analyzed or optimized [30].
Periscope [17] and the Periscope Tuning Framework
PTF [31] implement an online analysis for automati-
cally tuning the energy consumption. The tool is cur-
rently developed in the AutoTune [31] project that aims
for performance and energy optimizations. In their cur-
rent approach Navarrete et al. [34] use an instrumented
code to find an optimal processor frequency setting for
the energy-to-solution of applications.

Schöne and Molka also increase the energy effi-
ciency of applications using performance measurement
tools. In [38] they use the VampirTrace framework and
follow a 2-step approach. First, they instrument the ap-
plication and measure hardware performance counters
at a per region scale. Second, they use this information
and the existing instrumentation to adjust hardware and
software settings at runtime per region. With the inclu-
sion of wattmeters in VampirTrace, Schöne and Molka
validate their setup choices with another measurement
run, as shown in Fig. 7. They propose multiple op-
timizations like frequency scaling, concurrency throt-
tling and prefetcher settings.

8. Constant-power tuning considerations

The forgoing sections have demonstrated how algo-
rithmic approaches to saving energy (and to a lesser ex-

Fig. 7. Vampir Comparison View: Normal vs. energy efficient execu-
tion of the MPI parallel NPB benchmark SP on a dual-socket Sandy
Bridge system. Energy efficiency is provided by the usage of DVFS
via libadapt and VampirTrace. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140393.)

tent, saving power) have developed into a mature field
of study with significant impact on hardware design.
However, as supercomputers continue to move to exas-
cale, the primary constraint on performance becomes
the bound on electrical power available to the system.
Diverging from this bound, either above or below, will
incur significant cost. The question turns from one of
energy efficiency to one of optimizing performance un-
der a power bound. Changing the focus from energy to
performance has several profound effects on the design
of extreme-scale systems.

Hardware overprovisioning. Given that utilization
should be measured from the scarce resource, the uti-
lization of existing machines is (correctly) measured in
terms of node-hours. For these designs, machines were
provisioned to have power sufficient to run all nodes
at peak performance (worst-case provisioning). If this
provisioning model was to carry over to extreme-scale
designs, the node count would be limited by the as-
sumption that nodes would always draw peak power.
Such a system would never exceed its power limit,
but as most scientific codes do not consistently re-
quire peak node power, a portion of the allocated
power would be consistently unused. From a node-
hours point of view the machine may be fully uti-
lized, but measuring percent power consumption tells
a different story. To guarantee full power utilization,
designs should instead be hardware-overprovisioned.
The system would have more nodes than can be run at
full power until the power bound, and a combination
of the job scheduler and runtime system will limit per-

R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems 281

node power consumption so that the full allocation of
power is used at all times. This may require that a sub-
set of nodes be idled from time to time, but as power
(not nodes) is the bottleneck resource, this outcome
should maximize performance.

Scheduling. Job scheduling over time and node
counts is already a known NP-hard problem [47].
Adding a user-requested power allocation adds an-
other level of complexity. Users need to understand
how power, node counts and performance interact with
their code in order to request an appropriate amount
of power for a given job. The scheduler must release
the job when both a sufficient number of nodes and
power is forecast to be available for the expected du-
ration of the job. When a job completes, the sched-
uler will be required to decide whether the newly-freed
nodes and power should be used to start another job
in the queue, or whether some or all of the newly-
freed nodes should be put into a low-power sleep state
and the power distributed to already-running jobs. The
scheduler may also be required to handle a fluctuating
system-wide power bound, either due to dependence
on variable sources of energy (such as wind or solar) or
hour-to-hour fluctuations in the pricing of electricity.

Node configuration. With the introduction of Turbo
frequencies on newer x86 processors, performance
modeling became significantly more difficult. Exist-
ing models, such as those described earlier in this pa-
per, rely on a simplification that performance (in the
absence of other bottlenecks) increases linearly with
core count if no bottleneck is present. Turbo mode
turns this on its head: higher frequencies are avail-
able, but only if few cores are used. Memory bus bot-
tlenecks are common for scientific codes, and adding
either more cores or higher frequencies once the bus
is saturated burns power without any increase in per-
formance. Adding a power bound to this mix compli-
cates performance modeling still further: should per-
node power be reduced in order to bring up additional
nodes, or should fewer, hotter nodes be scheduled? The
decision whether to use multi-threading, GPU acceler-
ators, or vector units takes this problem well beyond
what existing models can handle.

Load imbalance. Despite years of research, real-
world applications continue to suffer from load imbal-
ance. Rebalancing power within a running job rather
than rebalancing work distributions may be more effi-
cient in terms of both performance and energy. Taken
in combination, we expect data balancing only needs
to get within 10% of the ideal for power balancing to
approach optimal execution.

Getting to an exaflop within 20 MW is largely a
hardware problem. Making the best use of such a sys-
tem in a production environment however is a system
software problem, and one that will need to be solved
not only for exascale, but for all systems going forward
into the future.

9. Conclusion and outlook

In this paper we have described some aspects of
state-of-the-art energy efficiency tuning. We have pre-
sented common energy efficiency metrics and provided
an overview of energy efficiency analysis tools. We
have discussed what problems arise from including
such information and how different tools make use of
the metrics to provide users with hints how energy is
wasted in parallel applications. The integration of en-
ergy and power metrics into performance measuring
infrastructures however is only a first step to tuning.
The next step will be the integration of tuning cycles
and performance measurement. The reusage of sam-
pling and instrumentation infrastructures provides a
convenient front end for such an integration. We have
discussed first attempts for such an integration in pre-
vious papers.

The Online Access feature of Score-P provides a
promising interface for auto-tuning performance and
energy. The future plans of the energy aware AutoTune
plug-ins are related to the optimization of the search
algorithm by reducing the search space, which should
lead to a better performance. Currently, the search
algorithm consists of an independent and exhaustive
search which tests all available frequencies and gover-
nors. The next versions of the plugin will integrate a
heuristic search to focus the search just on a minimized
set of frequencies and governors. The heuristic will be
based on a energy model which is ongoing develop-
ment.

The measurement of power consumption however is
still an open field for engineering and research. Most
power measurement devices and infrastructures pro-
vide a limited temporal, spatial, or reading resolution.
Also external influences like OS noise and tempera-
ture issues influence the quality and reproducibility of
power measurements.

Another part of our future work is the development
of performance counter based energy models. As was
said before, measuring the power consumption of tasks
at a fine granular level is currently hard to achieve.
Thus, a model that does not rely on asynchronous data

282 R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems

with low resolution is inevitable to understand the en-
ergy efficiency at fine grained region level. Creating
such a model however provides certain pitfalls.

Acknowledgements

This work has been funded by the Bundesminis-
terium für Bildung und Forschung via the research
projects CoolSilicon (BMBF 13N10186), Score-E
(BMBF 01IH13001C) and FEPA (BMBF 01IH1300
9A) and the European projects FP7-318793 “Exa2
Green” and FP7-ICT-2011-7 “AutoTune”. Further
funding was received from the state of North-Rhine
Westphalia (“Anschubfinanzierung zum Aufbau des
Exascale Innovation Center (EIC)”).

References

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey and N.R. Tallent, Hpctoolkit: tools for
performance analysis of optimized parallel programs, Con-
currency and Computation: Practice and Experience 22(6)
(2010), 685–701.

[2] Advanced configuration and power interface (acpi) specifica-
tion, revision 5.0, December 2011.

[3] J.I. Aliaga, M. Bollhöfer, A.F. Martín and E.S. Quintana-Ortí,
Exploiting thread-level parallelism in the iterative solution of
sparse linear systems, Parallel Computing 37(3) (2011), 183–
202.

[4] P. Alonso, R.M. Badia, J. Labarta, M. Barreda, M.F. Dolz,
R. Mayo, E.S. Quintana-Orti and R. Reyes, Tools for power-
energy modelling and analysis of parallel scientific applica-
tions, in: 41st International Conference on Parallel Processing
(ICPP), 2012, pp. 420–429.

[5] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer,
H. Huber, R. Panda, F. Thomas and T. Wilde, A case study
of energy aware scheduling on supermuc, in: International Su-
percomputing Conference (ISC) Proceedings 2014, 2014, ac-
cepted for publication.

[6] S. Barrachina, M. Barreda, S. Catalán, M.F. Dolz, G. Fabregat,
R. Mayo and E.S. Quintana-Ortí, An integrated framework for
power-performance analysis of parallel scientific workloads,
in: 3rd Int. Conf. Smart Grids, Green Communications and IT
Energy-Aware Technologies, 2013, pp. 114–119.

[7] M. Barreda, S. Catalán, M.F. Dolz, R. Mayo and
E.S. Quintana-Ortí, Automatic detection of power bottlenecks
in parallel scientific applications, in: Computer Science –
Research and Development, 2013, pp. 1–9.

[8] D. Bedard, M.Y. Lim, R. Fowler and A. Porterfield, Powermon:
Fine-grained and integrated power monitoring for commodity
computer systems, in: Proceedings of the IEEE SoutheastCon
2010 (SoutheastCon), 2010, pp. 479–484.

[9] C. Bekas and A. Curioni, A new energy aware perfor-
mance metric, Computer Science – Research and Development
25(3,4) (2010), 187–195.

[10] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta and
P.W. Cook, Power-aware microarchitecture: design and mod-
eling challenges for next-generation microprocessors, Micro,
IEEE 20(6) (2000), 26–44.

[11] G. Contreras and M. Martonosi, Power prediction for In-
tel xscale reg; processors using performance monitoring unit
events, in: Proceedings of the 2005 International Symposium
on Low Power Electronics and Design, 2005. ISLPED’05, Au-
gust 2005, pp. 221–226.

[12] M.E.M. Diouri, M.F. Dolz, O. Glück, L. Lef‘evre, P. Alonso,
S. Catalán, R. Mayo and E.S. Quintana-Ortí, Solving some
mysteries in power monitoring of servers: Take care of your
wattmeters!, in: Energy Efficiency in Large Scale Distributed
Systems, J.-M. Pierson, G. Da Costa and L. Dittmann, eds, Lec-
ture Notes in Computer Science, Springer, Berlin/Heidelberg,
2013, pp. 3–18.

[13] J.J. Dongarra, Performance of various computers using stan-
dard linear equations software in a Fortran environment,
SIGARCH Comput. Archit. News 16(1) (1988), 47–69.

[14] W.-C. Feng and T. Scogland, The Green500 List: Year One, in:
5th IEEE Workshop on High-Performance, Power-Aware Com-
puting (in conjunction with the 23rd International Parallel &
Distributed Processing Symposium), Rome, Italy, May 2009.

[15] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li and K.W.
Cameron, Powerpack: Energy profiling and analysis of high-
performance systems and applications, IEEE Transactions on
Parallel and Distributed Systems 21(5) (2010), 658–671.

[16] M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker
and B. Mohr, The Scalasca performance toolset architecture,
Concurrency and Computation: Practice and Experience 22(6)
(2010), 702–719.

[17] M. Gerndt and M. Ott, Automatic performance analysis with
periscope, Concurrency and Computation: Practice and Expe-
rience 22(6) (2010), 736–748.

[18] B. Goel, S.A. McKee, R. Gioiosa, K. Singh, M. Bhadauria
and M. Cesati, Portable, scalable, per-core power estimation
for intelligent resource management, in: IGCC, August 2010,
pp. 135–146.

[19] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt
and W.E. Nagel, Power measurement techniques on standard
compute nodes: A quantitative comparison, in: IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS), 2013, pp. 194–204.

[20] G. Hager, J. Treibig, J. Habich and G. Wellein, Exploring per-
formance and power properties of modern multi-core chips via
simple machine models, in: Concurrency and Computation:
Practice and Experience, 2014.

[21] M. Horowitz, T. Indermaur and R. Gonzalez, Low-power digi-
tal design, in: Low Power Electronics, 1994. Digest of Techni-
cal Papers, IEEE Symposium, 1994, pp. 8–11.

[22] IBM systems director active energy manager. Installation and
user’s guide, Technical report, IBM Corporation, 2012.

[23] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual Volumes 3A, 3B, and 3C: System Programming Guide,
Parts 1 and 2, September 2013.

[24] V. Jimenez, R. Gioiosa, F.J. Cazorla, M. Valero, E. Kursun,
C. Isci, A. Buyuktosunoglu and P. Bose, Energy-aware ac-
counting and billing in large-scale computing facilities, IEEE
Micro 31(3) (2011), 60–71.

R. Schöne et al. / Tools and methods for measuring and tuning the energy efficiency of HPC systems 283

[25] R. Joseph and M. Martonosi, Run-time power estimation in
high performance microprocessors, in: Proceedings of the
2001 International Symposium on Low Power Electronics
and Design, ISLPED’01, ACM, New York, NY, USA, 2001,
pp. 135–140.

[26] R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer, V. An-
drade, G. Constant, A. Novak and S. Naffziger, An x86-64 core
implemented in 32 nm soi cmos, in: Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE Inter-
national, 2010, pp. 106–107.

[27] M. Knobloch, M. Foszczynski, W. Homberg, D. Pleiter and
H. Böttiger, Mapping fine-grained power measurements to
HPC application runtime characteristics on IBM POWER7,
in: Computer Science – Research and Development, 2013,
pp. 1–9.

[28] M. Knobloch, B. Mohr and T. Minartz, Determine energy-
saving potential in wait-states of large-scale parallel programs,
Computer Science – Research and Development 27 (2012),
255–263, Record converted from VDB: 12.11.2012.

[29] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M.S. Müller and W.E. Nagel, The vampir perfor-
mance analysis tool-set, in: Tools for High Performance Com-
puting, M. Resch, R. Keller, V. Himmler, B. Krammer and
A. Schulz, eds, Springer, Berlin/Heidelberg, 2008, pp. 139–
155.

[30] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Mal-
ony, W.E. Nagel, Y. Oleynik, P. Philippen, P. Saviankou,
D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg
and F. Wolf, Score-p: A joint performance measurement run-
time infrastructure for periscope, scalasca, tau, and vampir,
in: Tools for High Performance Computing 2011, H. Brunst,
M.S. Müller, W.E. Nagel and M.M. Resch, eds, Springer,
Berlin/Heidelberg, 2012, pp. 79–91.

[31] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt,
H. Haitof, C. Navarrete, S. Benkner, M. Sandrieser, L. Morin
and F. Bodin, Autotune: A plugin-driven approach to the
automatic tuning of parallel applications, in: Applied Par-
allel and Scientific Computing, P. Manninen and P. Öster,
eds, Lecture Notes in Computer Science, Vol. 7782, Springer,
Berlin/Heidelberg, 2013, pp. 328–342.

[32] D. Molka, D. Hackenberg, R. Schöne and M.S. Müller, Char-
acterizing the energy consumption of data transfers and arith-
metic operations on x8664 processors, in: Proceedings of the
1st International Green Computing Conference, IEEE, 2010,
pp. 123–133.

[33] M.S. Müller, J. Baron, W.C. Brantley, H. Feng, D. Hacken-
berg, R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux,
P. Shelepugin, M. Waveren, B. Whitney and K. Kumaran,
Spec omp2012 – an application benchmark suite for paral-
lel systems using openmp, in: OpenMP in a Heterogeneous
World, B. Chapman, F. Massaioli, M.S. Müller and M. Rorro,
eds, Lecture Notes in Computer Science, Vol. 7312, Springer,
Berlin/Heidelberg, 2012, pp. 223–236.

[34] C.B. Navarrete, C. Guillen, W. Hesse and M. Brehm, Autotun-
ing the energy consumption, in: PARCO, Advances in Parallel
Computing, IOS Press, 2014, pp. 668–677.

[35] New IBM switched and monitored family of power distribu-
tion units makes it easy to protect and manage high-availability
rack-based systems, Technical report, IBM Corporation, 2010.

[36] V. Pillet, J. Labarta, T. Cortes and S. Girona, Paraver: A tool
to visualize and analyze parallel code, in: WoTUG-18, 1995,
pp. 17–31.

[37] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan and E.
Weissmann, Power-management architecture of the Intel mi-
croarchitecture code-named sandy bridge, Micro, IEEE 32(2)
(2012), 20–27.

[38] R. Schöne and D. Molka, Integrating performance analysis and
energy efficiency optimizations in a unified environment, Com-
puter Science – Research and Development, 2013, pp. 1–9.

[39] R. Schöne, R. Tschüter, T. Ilsche and D. Hackenberg, The vam-
pirtrace plugin counter interface: introduction and examples,
in: Proceedings of the 2010 Conference on Parallel Process-
ing, Euro-Par 2010, Springer-Verlag, Berlin/Heidelberg, 2011,
pp. 501–511.

[40] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Mon-
toya and S. Cranford, Open–speedshop: An open source in-
frastructure for parallel performance analysis, Sci. Program.
16(2,3) (2008), 105–121.

[41] H. Servat, G. Llort, J. Giménez and J. Labarta, Detailed and si-
multaneous power and performance analysis, in: Concurrency
and Computation: Practice and Experience, 2013.

[42] S.S. Shende and A.D. Malony, The tau parallel performance
system, Int. J. High Perform. Comput. Appl. 20(2) (2006), 287–
311.

[43] K. Singh, M. Bhadauria and S.A. McKee, Real time power
estimation and thread scheduling via performance counters,
SIGARCH Comput. Archit. News 37(2) (2009), 46–55.

[44] D. Terpstra, H. Jagode, H. You and J. Dongarra, Collecting
performance data with papi-c, in: Tools for High Performance
Computing 2009, Springer, 2010, pp. 157–173.

[45] J. Treibig and G. Hager, Introducing a performance model for
bandwidth-limited loop kernels, in: Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Kar-
czewski and J. Wasniewski, eds, Lecture Notes in Com-
puter Science, Vol. 6067, Springer, Berlin/Heidelberg, 2010,
pp. 615–624.

[46] J. Treibig, G. Hager and G. Wellein, LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments, in: PSTI2010, The First International Workshop on Par-
allel Software Tools and Tool Infrastructures, Los Alamitos,
CA, USA, IEEE Computer Society, 2010, pp. 207–216.

[47] J.D. Ullman, Np-complete scheduling problems, Journal of
Computer and System Sciences 10(3) (1975), 384–393.

[48] M. Wittmann, G. Hager, T. Zeiser and G. Wellein, An anal-
ysis of energy-optimized lattice-Boltzmann cfd simulations
from the chip to the highly parallel level, in: CoRR, 2013,
abs/1304.7664.

[49] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan
and M.E. Papka, Integrating dynamic pricing of electricity into
energy aware scheduling for HPC systems, in: Proceedings
of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC’13, ACM, New
York, NY, USA, 2013, pp. 60:1–60:11.

[50] Z. Zhou, Z. Lan, W. Tang and N. Desai, Reducing energy costs
for IBM blue gene/p via power-aware job scheduling, in: Work-
shops on Job Scheduling Strategies for Parallel Processing
(JSSPP), 2013.

