000201129 001__ 201129
000201129 005__ 20210129215637.0
000201129 0247_ $$2doi$$a10.1109/eScience.2012.6404479
000201129 037__ $$aFZJ-2015-03434
000201129 1001_ $$0P:(DE-Juel1)132139$$aHoll, Sonja$$b0$$eCorresponding Author$$ufzj
000201129 1112_ $$a2012 IEEE 8th International Conference on E-Science (e-Science)$$cChicago$$d2012-10-08 - 2012-10-12$$wIL
000201129 245__ $$aA new optimization phase for scientific workflow management systems
000201129 260__ $$bIEEE$$c2012
000201129 29510 $$a2012 IEEE 8th International Conference on E-Science : [Proceedings] - IEEE, 2012. 
000201129 300__ $$a1 - 8
000201129 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1433946205_12154
000201129 3367_ $$033$$2EndNote$$aConference Paper
000201129 3367_ $$2ORCID$$aCONFERENCE_PAPER
000201129 3367_ $$2DataCite$$aOutput Types/Conference Paper
000201129 3367_ $$2DRIVER$$aconferenceObject
000201129 3367_ $$2BibTeX$$aINPROCEEDINGS
000201129 520__ $$aScientific workflows have emerged as an important tool for combining computational power with data analysis for all scientific domains in e-science. They help scientists to design and execute complex in silico experiments. However, with increasing complexity it becomes more and more infeasible to optimize scientific workflows by trial and error. To address this issue, this paper describes the design of a new optimization phase integrated in the established scientific workflow life cycle. We have also developed a flexible optimization application programming interface (API) and have integrated it into a scientific workflow management system. A sample plugin for parameter optimization based on genetic algorithms illustrates, how the API enables rapid implementation of concrete workflow optimization methods. Finally, a use case taken from the area of structural bioinformatics validates how the optimization approach facilitates setup, execution and monitoring of workflow parameter optimization in high performance computing e-science environments.
000201129 536__ $$0G:(DE-HGF)POF2-412$$a412 - Grid Technologies and Infrastructures (POF2-412)$$cPOF2-412$$fPOF II$$x0
000201129 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000201129 588__ $$aDataset connected to CrossRef Conference
000201129 7001_ $$0P:(DE-Juel1)132307$$aZimmermann, Olav$$b1$$ufzj
000201129 7001_ $$0P:(DE-HGF)0$$aHofmann-Apitius, Martin$$b2
000201129 773__ $$a10.1109/eScience.2012.6404479
000201129 909CO $$ooai:juser.fz-juelich.de:201129$$pVDB
000201129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132139$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132307$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201129 9132_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vData-Intensive Science and Federated Computing$$x0
000201129 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x1
000201129 9131_ $$0G:(DE-HGF)POF2-412$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vGrid Technologies and Infrastructures$$x0
000201129 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000201129 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000201129 980__ $$acontrib
000201129 980__ $$aVDB
000201129 980__ $$aI:(DE-Juel1)JSC-20090406
000201129 980__ $$aUNRESTRICTED