000201130 001__ 201130
000201130 005__ 20240625095126.0
000201130 0247_ $$2doi$$a10.1371/journal.pcbi.1000775
000201130 0247_ $$2ISSN$$a1553-734X
000201130 0247_ $$2ISSN$$a1553-7358
000201130 0247_ $$2Handle$$a2128/8714
000201130 0247_ $$2WOS$$aWOS:000278759700007
000201130 037__ $$aFZJ-2015-03435
000201130 082__ $$a570
000201130 1001_ $$0P:(DE-HGF)0$$aMarchese, Roberto$$b0
000201130 245__ $$aOn the Zwitterionic Nature of Gas-Phase Peptides and Protein Ions
000201130 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2010
000201130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433774224_26775
000201130 3367_ $$2DataCite$$aOutput Types/Journal article
000201130 3367_ $$00$$2EndNote$$aJournal Article
000201130 3367_ $$2BibTeX$$aARTICLE
000201130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201130 3367_ $$2DRIVER$$aarticle
000201130 520__ $$aDetermining the total number of charged residues corresponding to a given value of net charge for peptides and proteins in gas phase is crucial for the interpretation of mass-spectrometry data, yet it is far from being understood. Here we show that a novel computational protocol based on force field and massive density functional calculations is able to reproduce the experimental facets of well investigated systems, such as angiotensin II, bradykinin, and tryptophan-cage. The protocol takes into account all of the possible protomers compatible with a given charge state. Our calculations predict that the low charge states are zwitterions, because the stabilization due to intramolecular hydrogen bonding and salt-bridges can compensate for the thermodynamic penalty deriving from deprotonation of acid residues. In contrast, high charge states may or may not be zwitterions because internal solvation might not compensate for the energy cost of charge separation.
000201130 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201130 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201130 7001_ $$0P:(DE-HGF)0$$aGrandori, Rita$$b1$$eCorresponding Author
000201130 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b2$$ufzj
000201130 7001_ $$0P:(DE-HGF)0$$aRaugei, Simone$$b3$$eCorresponding Author
000201130 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1000775$$gVol. 6, no. 5, p. e1000775 -$$n5$$pe1000775$$tPLoS Computational Biology$$v6$$x1553-7358$$y2010
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.pdf$$yOpenAccess
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.gif?subformat=icon$$xicon$$yOpenAccess
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201130 8564_ $$uhttps://juser.fz-juelich.de/record/201130/files/journal.pcbi.1000775.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201130 909CO $$ooai:juser.fz-juelich.de:201130$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201130 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201130 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201130 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000201130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201130 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201130 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201130 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201130 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201130 920__ $$lyes
000201130 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201130 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201130 9801_ $$aFullTexts
000201130 980__ $$ajournal
000201130 980__ $$aVDB
000201130 980__ $$aFullTexts
000201130 980__ $$aUNRESTRICTED
000201130 980__ $$aI:(DE-Juel1)GRS-20100316
000201130 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201130 981__ $$aI:(DE-Juel1)INM-9-20140121
000201130 981__ $$aI:(DE-Juel1)IAS-5-20120330