000201143 001__ 201143
000201143 005__ 20210129215640.0
000201143 0247_ $$2doi$$a10.1007/s11269-011-9911-1
000201143 0247_ $$2ISSN$$a0920-4741
000201143 0247_ $$2ISSN$$a1573-1650
000201143 0247_ $$2WOS$$aWOS:000297837200010
000201143 037__ $$aFZJ-2015-03448
000201143 041__ $$aEnglish
000201143 082__ $$a550
000201143 1001_ $$0P:(DE-Juel1)129578$$aTetzlaff, Björn$$b0$$eCorresponding Author
000201143 245__ $$aModelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty
000201143 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2012
000201143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434003396_12155
000201143 3367_ $$2DataCite$$aOutput Types/Journal article
000201143 3367_ $$00$$2EndNote$$aJournal Article
000201143 3367_ $$2BibTeX$$aARTICLE
000201143 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201143 3367_ $$2DRIVER$$aarticle
000201143 520__ $$aSoil erosion on arable land and on steep vineyards is a major problem in the state of Hesse (21,115 km²) in central Germany. The aim of a joint study between the Research Centre Jülich, the Hessian Agency for the Environment and Geology and the Hessian Ministry for the Environment, Energy, Agriculture and Consumer Protection was to delineate parcels which are severely affected by erosion and to identify sediment source areas. For this purpose, the ABAG, an adaptation of the USLE approach to German conditions, has been employed with the best available data sets on K-, C-, R- and LS-factor. Model results at the field scale show that soil losses in Hesse vary between <0.5 and >15 tonnes/hectare/year. The mean loss amounts to ca. 4.3 tonnes/hectare/year. The sediment delivery ratios for 450 sub-catchments range between 0.5 and 78% with a mean of 18%. Further analysis showed that LS- and C-factor are of highest sensitivity for the model output. Therefore, the effects of alternative algorithms or sources for LS- and C-factor on the results were assessed. An uncertainty analysis based on Gaussian error propagation and Monte Carlo simulation showed that the uncertainty of model results induced by input parameters is 1.7 tonnes/hectare/year or 34% of the mean annual soil loss. The model results are a good basis for further works concerning a soil erosion atlas and internet-based soil data viewer.
000201143 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000201143 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000201143 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201143 7001_ $$0P:(DE-Juel1)129554$$aWendland, Frank$$b1
000201143 773__ $$0PERI:(DE-600)2016360-5$$a10.1007/s11269-011-9911-1$$gVol. 26, no. 1, p. 165 - 184$$n1$$p165 - 184$$tWater resources management$$v26$$x1573-1650$$y2012
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.pdf$$yRestricted
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.gif?subformat=icon$$xicon$$yRestricted
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201143 8564_ $$uhttps://juser.fz-juelich.de/record/201143/files/art_10.1007_s11269-011-9911-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201143 909CO $$ooai:juser.fz-juelich.de:201143$$pVDB:Earth_Environment$$pVDB
000201143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129578$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129554$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201143 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000201143 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000201143 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000201143 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201143 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201143 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201143 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201143 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201143 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201143 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201143 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201143 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000201143 980__ $$ajournal
000201143 980__ $$aVDB
000201143 980__ $$aI:(DE-Juel1)IBG-3-20101118
000201143 980__ $$aUNRESTRICTED