000201149 001__ 201149
000201149 005__ 20240711085621.0
000201149 0247_ $$2doi$$a10.1002/fuce.201200166
000201149 0247_ $$2ISSN$$a1615-6846
000201149 0247_ $$2ISSN$$a1615-6854
000201149 0247_ $$2WOS$$aWOS:000327706700014
000201149 037__ $$aFZJ-2015-03454
000201149 041__ $$aEnglish
000201149 082__ $$a620
000201149 1001_ $$0P:(DE-Juel1)141782$$aVieweger, S.$$b0$$eCorresponding Author
000201149 245__ $$aThin Electrolytes on Metal-Supported Fuel Cells
000201149 260__ $$aWeinheim$$bWiley-VCH$$c2013
000201149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434004098_12149
000201149 3367_ $$2DataCite$$aOutput Types/Journal article
000201149 3367_ $$00$$2EndNote$$aJournal Article
000201149 3367_ $$2BibTeX$$aARTICLE
000201149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201149 3367_ $$2DRIVER$$aarticle
000201149 520__ $$aThis work focuses on the deposition of thin-film electrolytes. Sol–Gel Spin-coating technique has been used to create thin films and subsequent characterization of the different sub-surfaces has been undertaken. The substrates are composed of ferritic oxide strengthened Fe–Cr alloy (ITM). A common challenge in coating these supports is their high roughness and porosity in comparison with state-of-the-art ceramic substrates. Here, the nickel and 8 mol.% yttria-stabilized zirconia (8YSZ) based anode is made of graded layers, which reduces the roughness and porosity of the metal support. The quality of the thin spin-coated electrolyte-layers depends on the microstructure of the sub-surface. Influencial variables are the surface roughness, the pore size and its depth. To understand the dependencies between these variables and the coating properties, analyses with various optical measurement methods have been carried out prior to coating. Standard roughness detection using optical profilometry and confocal laser scanning microscopy were compared for surface characterization. The Sobel edge detection method was used to analyze images and was able to clearly reveal defects. The fabricated electrolytes have a thickness ∼0.5 μm with leak rates of 1 – 10×10–4 (hPa dm3 s–1 cm–2) against air of metallic supported cells with a reduced anode, which are comparable to those of anode-supported cells.
000201149 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000201149 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000201149 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201149 7001_ $$0P:(DE-Juel1)129641$$aMücke, R.$$b1$$ufzj
000201149 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b2$$ufzj
000201149 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$ufzj
000201149 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201200166$$gVol. 13, no. 4, p. 556 - 564$$n4$$p556 - 564$$tFuel cells$$v13$$x1615-6846$$y2013
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.pdf$$yRestricted
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.gif?subformat=icon$$xicon$$yRestricted
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201149 909CO $$ooai:juser.fz-juelich.de:201149$$pVDB
000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201149 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000201149 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000201149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201149 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201149 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201149 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201149 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000201149 980__ $$ajournal
000201149 980__ $$aVDB
000201149 980__ $$aI:(DE-Juel1)IEK-1-20101013
000201149 980__ $$aUNRESTRICTED
000201149 981__ $$aI:(DE-Juel1)IMD-2-20101013