000201149 001__ 201149 000201149 005__ 20240711085621.0 000201149 0247_ $$2doi$$a10.1002/fuce.201200166 000201149 0247_ $$2ISSN$$a1615-6846 000201149 0247_ $$2ISSN$$a1615-6854 000201149 0247_ $$2WOS$$aWOS:000327706700014 000201149 037__ $$aFZJ-2015-03454 000201149 041__ $$aEnglish 000201149 082__ $$a620 000201149 1001_ $$0P:(DE-Juel1)141782$$aVieweger, S.$$b0$$eCorresponding Author 000201149 245__ $$aThin Electrolytes on Metal-Supported Fuel Cells 000201149 260__ $$aWeinheim$$bWiley-VCH$$c2013 000201149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434004098_12149 000201149 3367_ $$2DataCite$$aOutput Types/Journal article 000201149 3367_ $$00$$2EndNote$$aJournal Article 000201149 3367_ $$2BibTeX$$aARTICLE 000201149 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201149 3367_ $$2DRIVER$$aarticle 000201149 520__ $$aThis work focuses on the deposition of thin-film electrolytes. Sol–Gel Spin-coating technique has been used to create thin films and subsequent characterization of the different sub-surfaces has been undertaken. The substrates are composed of ferritic oxide strengthened Fe–Cr alloy (ITM). A common challenge in coating these supports is their high roughness and porosity in comparison with state-of-the-art ceramic substrates. Here, the nickel and 8 mol.% yttria-stabilized zirconia (8YSZ) based anode is made of graded layers, which reduces the roughness and porosity of the metal support. The quality of the thin spin-coated electrolyte-layers depends on the microstructure of the sub-surface. Influencial variables are the surface roughness, the pore size and its depth. To understand the dependencies between these variables and the coating properties, analyses with various optical measurement methods have been carried out prior to coating. Standard roughness detection using optical profilometry and confocal laser scanning microscopy were compared for surface characterization. The Sobel edge detection method was used to analyze images and was able to clearly reveal defects. The fabricated electrolytes have a thickness ∼0.5 μm with leak rates of 1 – 10×10–4 (hPa dm3 s–1 cm–2) against air of metallic supported cells with a reduced anode, which are comparable to those of anode-supported cells. 000201149 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0 000201149 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1 000201149 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201149 7001_ $$0P:(DE-Juel1)129641$$aMücke, R.$$b1$$ufzj 000201149 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b2$$ufzj 000201149 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$ufzj 000201149 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201200166$$gVol. 13, no. 4, p. 556 - 564$$n4$$p556 - 564$$tFuel cells$$v13$$x1615-6846$$y2013 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.pdf$$yRestricted 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.gif?subformat=icon$$xicon$$yRestricted 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-180$$xicon-180$$yRestricted 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-640$$xicon-640$$yRestricted 000201149 8564_ $$uhttps://juser.fz-juelich.de/record/201149/files/556_ftp.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201149 909CO $$ooai:juser.fz-juelich.de:201149$$pVDB 000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000201149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000201149 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000201149 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0 000201149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201149 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201149 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000201149 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000201149 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000201149 980__ $$ajournal 000201149 980__ $$aVDB 000201149 980__ $$aI:(DE-Juel1)IEK-1-20101013 000201149 980__ $$aUNRESTRICTED 000201149 981__ $$aI:(DE-Juel1)IMD-2-20101013