001     201149
005     20240711085621.0
024 7 _ |a 10.1002/fuce.201200166
|2 doi
024 7 _ |a 1615-6846
|2 ISSN
024 7 _ |a 1615-6854
|2 ISSN
024 7 _ |a WOS:000327706700014
|2 WOS
037 _ _ |a FZJ-2015-03454
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Vieweger, S.
|0 P:(DE-Juel1)141782
|b 0
|e Corresponding Author
245 _ _ |a Thin Electrolytes on Metal-Supported Fuel Cells
260 _ _ |a Weinheim
|c 2013
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434004098_12149
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a This work focuses on the deposition of thin-film electrolytes. Sol–Gel Spin-coating technique has been used to create thin films and subsequent characterization of the different sub-surfaces has been undertaken. The substrates are composed of ferritic oxide strengthened Fe–Cr alloy (ITM). A common challenge in coating these supports is their high roughness and porosity in comparison with state-of-the-art ceramic substrates. Here, the nickel and 8 mol.% yttria-stabilized zirconia (8YSZ) based anode is made of graded layers, which reduces the roughness and porosity of the metal support. The quality of the thin spin-coated electrolyte-layers depends on the microstructure of the sub-surface. Influencial variables are the surface roughness, the pore size and its depth. To understand the dependencies between these variables and the coating properties, analyses with various optical measurement methods have been carried out prior to coating. Standard roughness detection using optical profilometry and confocal laser scanning microscopy were compared for surface characterization. The Sobel edge detection method was used to analyze images and was able to clearly reveal defects. The fabricated electrolytes have a thickness ∼0.5 μm with leak rates of 1 – 10×10–4 (hPa dm3 s–1 cm–2) against air of metallic supported cells with a reduced anode, which are comparable to those of anode-supported cells.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Mücke, R.
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Menzler, N. H.
|0 P:(DE-Juel1)129636
|b 2
|u fzj
700 1 _ |a Buchkremer, H. P.
|0 P:(DE-Juel1)129594
|b 3
|u fzj
773 _ _ |a 10.1002/fuce.201200166
|g Vol. 13, no. 4, p. 556 - 564
|0 PERI:(DE-600)2054621-X
|n 4
|p 556 - 564
|t Fuel cells
|v 13
|y 2013
|x 1615-6846
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201149/files/556_ftp.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201149
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129594
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21