000201154 001__ 201154
000201154 005__ 20210129215643.0
000201154 0247_ $$2doi$$a10.2136/vzj2009.0163
000201154 0247_ $$2WOS$$aWOS:000287739800012
000201154 037__ $$aFZJ-2015-03459
000201154 041__ $$aEnglish
000201154 082__ $$a550
000201154 1001_ $$0P:(DE-HGF)0$$aRudi, J.$$b0
000201154 245__ $$aMultiscale Analysis of Hydrologic Time Series Data using the Hilbert–Huang Transform
000201154 260__ $$aMadison, Wis.$$bSSSA$$c2010
000201154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434007414_12152
000201154 3367_ $$2DataCite$$aOutput Types/Journal article
000201154 3367_ $$00$$2EndNote$$aJournal Article
000201154 3367_ $$2BibTeX$$aARTICLE
000201154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201154 3367_ $$2DRIVER$$aarticle
000201154 520__ $$aFor the analysis of time series data from hydrology, we used a recently developed technique that is by now widely known as the Hilbert–Huang transform (HHT). Specifically, it is designed for nonlinear and nonstationary data. In contrast to data analysis techniques using the short-time, windowed Fourier transform or the continuous wavelet transform, the new technique is empirically adapted to the data in the following sense. First, an additive decomposition, called empirical mode decomposition (EMD), of the data into certain multiscale components is computed. Second, to each of these components, the Hilbert transform is applied. The resulting Hilbert spectrum of the modes provides a localized time–frequency spectrum and instantaneous (time-dependent) frequencies. In this study, we applied the HHT to hydrological time series data from the Upper Rur Catchment Area, mostly German territory, taken during a period of 20 yr. Our first observation was that a coarse approximation of the data can be derived by truncating the EMD representation. This can be used to better model patterns like seasonal structures. Moreover, the corresponding time–frequency energy spectrum applied to the complete EMD revealed seasonal events in a particular apparent way together with their energy. We compared the Hilbert spectra with Fourier spectrograms and wavelet spectra to demonstrate a better localization of the energy components, which also exhibit strong seasonal components. The Hilbert energy spectrum of the three measurement stations appear to be very similar, indicating little local variability in drainage.
000201154 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000201154 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000201154 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201154 7001_ $$0P:(DE-HGF)0$$aPabel, R.$$b1
000201154 7001_ $$0P:(DE-HGF)0$$aJager, G.$$b2
000201154 7001_ $$0P:(DE-Juel1)130061$$aKoch, R.$$b3
000201154 7001_ $$0P:(DE-HGF)0$$aKunoth, A.$$b4$$eCorresponding Author
000201154 7001_ $$0P:(DE-Juel1)129440$$aBogena, H.$$b5
000201154 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2009.0163$$gVol. 9, no. 4, p. 925 -$$n4$$p925 - 942$$tVadose zone journal$$v9$$x1539-1663$$y2010
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.pdf$$yRestricted
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.gif?subformat=icon$$xicon$$yRestricted
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201154 8564_ $$uhttps://juser.fz-juelich.de/record/201154/files/vzj-9-4-925.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201154 909CO $$ooai:juser.fz-juelich.de:201154$$pVDB:Earth_Environment$$pVDB
000201154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130061$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201154 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000201154 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000201154 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000201154 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201154 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201154 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201154 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201154 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201154 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201154 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000201154 980__ $$ajournal
000201154 980__ $$aVDB
000201154 980__ $$aI:(DE-Juel1)IBG-3-20101118
000201154 980__ $$aUNRESTRICTED