001     201156
005     20210129215644.0
024 7 _ |a 10.1177/0959683612441838
|2 doi
024 7 _ |a 0959-6836
|2 ISSN
024 7 _ |a 1477-0911
|2 ISSN
024 7 _ |a WOS:000308883300001
|2 WOS
037 _ _ |a FZJ-2015-03461
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Kuhl, N.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a A combined pollen and  18O Sphagnum record of mid-Holocene climate variability from Durres Maar (Eifel, Germany)
260 _ _ |a Los Angeles, Calif. [u.a.]
|c 2012
|b Sage
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434007633_12148
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this study we investigate pollen and oxygen isotopes of moss cellulose from the peat bog ‘Dürres Maar’ in the Eifel low mountain range, Germany (450 m a.s.l.) to quantitatively infer mid-Holocene climate change for the period between ~7000 and 3800 cal. BP. Pollen was analysed on the same samples from which Sphagnum leaves were isolated to extract cellulose for the determination of its oxygen isotope composition (δ18OSphagnum). To quantitatively estimate January and July temperature and annual precipitation from the pollen data, we applied a probabilistic indicator taxa method (‘pdf-method’). The pollen-based reconstructions indicate July temperatures ~1°C higher around 6000 cal. BP than after ~5500 cal. BP, which is consistent with a ~1‰ decrease in δ18OSphagnum during the same period. While the pollen-based climate reconstructions indicate little variability in summer temperature after ~5500 cal. BP, winter temperature shows several pronounced cold excursions of ~2–4°C in this period, which was likely accompanied by changes in precipitation patterns. Test reconstructions leaving out specific taxa indicate that not only larger climate trends, but also relatively small-scale climate variability can robustly be reconstructed with the pdf-method. This is of particular importance for reliable reconstructions of climate variability not only during the Holocene, but also in former interglacials, for which archives are rare and pollen is often the only suitable proxy in terrestrial records. The stable isotope values agree with the reconstructions based on pollen for the time between ~4500 and 3500 cal. BP, but not for the period before 4500 cal. BP. We explain this difference by atmospheric circulation patterns being different in the mid and late Holocene, respectively.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Moschen, R.
|0 P:(DE-Juel1)129507
|b 1
773 _ _ |a 10.1177/0959683612441838
|g Vol. 22, no. 10, p. 1075 - 1085
|0 PERI:(DE-600)2027956-5
|n 10
|p 1075 - 1085
|t The @Holocene
|v 22
|y 2012
|x 1477-0911
856 4 _ |u https://juser.fz-juelich.de/record/201156/files/The%20Holocene-2012-K%C3%BChl-1075-85.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201156
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129507
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21