000201159 001__ 201159
000201159 005__ 20210129215644.0
000201159 0247_ $$2doi$$a10.1111/j.1475-2743.2012.00407.x
000201159 0247_ $$2ISSN$$a0266-0032
000201159 0247_ $$2ISSN$$a1475-2743
000201159 0247_ $$2WOS$$aWOS:000305399300005
000201159 0247_ $$2altmetric$$aaltmetric:715548
000201159 037__ $$aFZJ-2015-03464
000201159 041__ $$aEnglish
000201159 082__ $$a630
000201159 1001_ $$0P:(DE-HGF)0$$aBorchard, N.$$b0$$eCorresponding Author
000201159 245__ $$aPhysical activation of biochar and its meaning for soil fertility and nutrient leaching - a greenhouse experiment
000201159 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2012
000201159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434009000_12153
000201159 3367_ $$2DataCite$$aOutput Types/Journal article
000201159 3367_ $$00$$2EndNote$$aJournal Article
000201159 3367_ $$2BibTeX$$aARTICLE
000201159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201159 3367_ $$2DRIVER$$aarticle
000201159 520__ $$aThe slow alteration of the surface of charred biomass (biochar) over time may contribute to an improved nutrient retention and thus fertility of tropical soils. Here, we investigated soils from temperate climates and investigated whether a technical steam activation of biochar could accelerate its positive effects on nutrient retention and uptake by plants relative to nonactivated biochar. To this aim, we performed microcosm experiments with sandy or silty soil, mixed with 2.0, 7.5 and 15.0 g/kg soil of fine (<2 mm) or coarse-sized (2–10 mm) biochar from beech wood (Fagus sp.). After initial fertilizer (NPK), ashes and excess nutrients were leached with water, and the microcosms were planted for 142 days with Italian Ryegrass (Lolium multiflorum ssp. italicum). Thereafter, leachate, soil and plant samples were analysed for their nutrient contents. The results showed that biochar additions of ≤15 g/kg soil left elevated contents of available P and N in the surface soil but reduced their uptake into the plants. As a result, total biomass production was unchanged. Different particle size and application amounts influenced these findings only marginally. Nitrate leaching was enhanced in the sandy soil (+41% for nitrate, but reduced in the silty soil −17%) and P was immobilized. Hence, the fertility of the temperate soils under study was only marginally affected by pure biochar amendments. Steam activation, however, almost doubled the positive effects of biochars in all instances, thus being an interesting option for future biochar applications.
000201159 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000201159 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000201159 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201159 7001_ $$0P:(DE-HGF)0$$aWolf, A.$$b1
000201159 7001_ $$0P:(DE-HGF)0$$aLaabs, V.$$b2
000201159 7001_ $$0P:(DE-HGF)0$$aAeckersberg, R.$$b3
000201159 7001_ $$0P:(DE-HGF)0$$aScherer, H. W.$$b4
000201159 7001_ $$0P:(DE-HGF)0$$aMoeller, A.$$b5
000201159 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b6
000201159 773__ $$0PERI:(DE-600)2020513-2$$a10.1111/j.1475-2743.2012.00407.x$$gVol. 28, no. 2, p. 177 - 184$$n2$$p177 - 184$$tSoil use and management$$v28$$x0266-0032$$y2012
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.pdf$$yRestricted
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.gif?subformat=icon$$xicon$$yRestricted
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201159 8564_ $$uhttps://juser.fz-juelich.de/record/201159/files/j.1475-2743.2012.00407.x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201159 909CO $$ooai:juser.fz-juelich.de:201159$$pVDB:Earth_Environment$$pVDB
000201159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000201159 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000201159 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000201159 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000201159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201159 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201159 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201159 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201159 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201159 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201159 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000201159 980__ $$ajournal
000201159 980__ $$aVDB
000201159 980__ $$aI:(DE-Juel1)IBG-3-20101118
000201159 980__ $$aUNRESTRICTED