001     201161
005     20210129215644.0
024 7 _ |a 10.2134/jeq2012.0064
|2 doi
024 7 _ |a 0047-2425
|2 ISSN
024 7 _ |a 1537-2537
|2 ISSN
024 7 _ |a WOS:000314749500020
|2 WOS
037 _ _ |a FZJ-2015-03466
082 _ _ |a 333.7
100 1 _ |a Prost, Katharina
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Biochar Affected by Composting with Farmyard Manure
260 _ _ |a Madison, Wis.
|c 2013
|b ASA [u.a.]
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434012903_12150
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Biochar applications to soils can improve soil fertility by increasing the soil’s cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g−1, and that of charcoal increased from 0.03 to 0.52 g g−1. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg−1; charcoal: from 0.03 to 3.52 g kg−1), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg−1; charcoal: from 3.2 to 377.2 mg kg−1), plant-available phosphorus (gasification coke: from 351 to 635 mg kg−1; charcoal: from 44 to 190 mg kg−1), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg−1; charcoal: from 0.6 to 8.5 g kg−1). The potential CEC increased from 22.4 to 88.6 mmolc kg−1 for the gasification coke and from 20.8 to 39.0 mmolc kg−1 for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Borchard, Nils
|0 P:(DE-Juel1)145704
|b 1
700 1 _ |a Siemens, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kautz, Timo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Séquaris, Jean-Marie
|0 P:(DE-Juel1)129544
|b 4
700 1 _ |a Möller, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 6
773 _ _ |a 10.2134/jeq2012.0064
|g Vol. 42, no. 1, p. 164 -
|0 PERI:(DE-600)2050469-X
|n 1
|p 164 -
|t Journal of environmental quality
|v 42
|y 2013
|x 0047-2425
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201161/files/jeq-42-1-164.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201161
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129544
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129427
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21