001     201172
005     20250129094228.0
024 7 _ |a 10.1016/j.jnucmat.2009.10.005
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000276533100005
|2 WOS
024 7 _ |a altmetric:21826106
|2 altmetric
037 _ _ |a FZJ-2015-03477
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Bauer, G. S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Overview on spallation target design concepts and related materials issues
260 _ _ |a Amsterdam [u.a.]
|c 2010
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434022653_12155
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a From a modest beginning of a few kW of beam power spallation sources have now evolved into systems that must be able to handle several MW, mostly delivered in short pulses of less than microsecond duration. The high radiation field and high instantaneous heat deposition which spallation targets, in particular for the new high power sources, are subject to have led to several different design concepts which aim at circumventing or reducing the deleterious effects on the materials in the targets. Efficient cooling and high neutron source density are competing requirements which can be best reconciled by moving the target material out of the reaction zone and removing the heat elsewhere before returning the material back into the proton beam. One option is the use of a flowing liquid metal, which has been the method of choice in most of the recent spallation source designs, but requires solutions to a variety of new problems, such as liquid metal corrosion, cavitation erosion and e.g. in the case of PbBi, or Pb, high temperature gradients. Using a rotating solid target is an option in certain cases but still has to cope with the instantaneous load levels. While it may help to keep the average heat load and radiation damage in the target material low and thus extend the target life time by more than an order of magnitude, it still has its own design and materials issues. Opportunities to carry out research in this field are rather limited because the effects can hardly be simulated off line and, apart from spallation targets in operation, almost no facilities are available.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 1
536 _ _ |a 542 - Neutrons (POF2-542)
|0 G:(DE-HGF)POF2-542
|c POF2-542
|f POF II
|x 2
536 _ _ |a 544 - In-house Research with PNI (POF2-544)
|0 G:(DE-HGF)POF2-544
|c POF2-544
|f POF II
|x 3
536 _ _ |a 54G - JCNS (POF2-54G24)
|0 G:(DE-HGF)POF2-54G24
|c POF2-54G24
|f POF II
|x 4
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
773 _ _ |a 10.1016/j.jnucmat.2009.10.005
|g Vol. 398, no. 1-3, p. 19 - 27
|0 PERI:(DE-600)2001279-2
|n 1-3
|p 19 - 27
|t Journal of nuclear materials
|v 398
|y 2010
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201172/files/1-s2.0-S0022311509008137-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201172
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 2
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-542
|2 G:(DE-HGF)POF2-500
|v Neutrons
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|v In-house Research with PNI
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G24
|2 G:(DE-HGF)POF2-500
|v JCNS
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21