TY  - JOUR
AU  - Kim, Do Yun
AU  - Santbergen, Rudi
AU  - Jäger, Klaus
AU  - Sever, Martin
AU  - Krč, Janez
AU  - Topič, Marko
AU  - Hänni, Simon
AU  - Zhang, Chao
AU  - Heidt, Anna
AU  - Meier, Matthias
AU  - van Swaaij, René A. C. M. M.
AU  - Zeman, Miro
TI  - Effect of Substrate Morphology Slope Distributions on Light Scattering, nc-Si:H Film Growth, and Solar Cell Performance
JO  - ACS applied materials & interfaces
VL  - 6
IS  - 24
SN  - 1944-8252
CY  - Washington, DC
PB  - Soc.
M1  - FZJ-2015-03495
SP  - 22061 - 22068
PY  - 2014
AB  - Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σrms) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σrms, lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σrms, a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σrms of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000347139400038
DO  - DOI:10.1021/am5054114
UR  - https://juser.fz-juelich.de/record/201190
ER  -