000201205 001__ 201205
000201205 005__ 20240625095129.0
000201205 0247_ $$2doi$$a10.1063/1.4824106
000201205 0247_ $$2ISSN$$a0021-9606
000201205 0247_ $$2ISSN$$a1089-7690
000201205 0247_ $$2WOS$$aWOS:000325780800055
000201205 0247_ $$2Handle$$a2128/19001
000201205 0247_ $$2altmetric$$aaltmetric:1848656
000201205 0247_ $$2pmid$$apmid:24116648
000201205 037__ $$aFZJ-2015-03510
000201205 041__ $$aEnglish
000201205 082__ $$a540
000201205 1001_ $$0P:(DE-HGF)0$$aZheng, Wenwei$$b0
000201205 245__ $$aMolecular recognition of DNA by ligands: Roughness and complexity of the free energy profile
000201205 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2013
000201205 3367_ $$2DRIVER$$aarticle
000201205 3367_ $$2DataCite$$aOutput Types/Journal article
000201205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434028914_12155
000201205 3367_ $$2BibTeX$$aARTICLE
000201205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201205 3367_ $$00$$2EndNote$$aJournal Article
000201205 520__ $$aUnderstanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.
000201205 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201205 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201205 7001_ $$0P:(DE-HGF)0$$aVargiu, Attlio Vittorio$$b1
000201205 7001_ $$0P:(DE-HGF)0$$aRohrdanz, Mary A.$$b2
000201205 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$ufzj
000201205 7001_ $$0P:(DE-HGF)0$$aClementi, Cecilia$$b4$$eCorresponding Author
000201205 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4824106$$gVol. 139, no. 14, p. 145102 -$$n14$$p145102 -$$tThe @journal of chemical physics$$v139$$x0021-9606$$y2013
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.pdf$$yOpenAccess
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.gif?subformat=icon$$xicon$$yOpenAccess
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201205 8564_ $$uhttps://juser.fz-juelich.de/record/201205/files/1.4824106.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201205 909CO $$ooai:juser.fz-juelich.de:201205$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000201205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201205 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201205 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201205 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201205 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201205 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201205 920__ $$lyes
000201205 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201205 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201205 9801_ $$aFullTexts
000201205 980__ $$ajournal
000201205 980__ $$aVDB
000201205 980__ $$aUNRESTRICTED
000201205 980__ $$aI:(DE-Juel1)GRS-20100316
000201205 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201205 981__ $$aI:(DE-Juel1)INM-9-20140121
000201205 981__ $$aI:(DE-Juel1)IAS-5-20120330