001     201205
005     20240625095129.0
024 7 _ |a 10.1063/1.4824106
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a WOS:000325780800055
|2 WOS
024 7 _ |a 2128/19001
|2 Handle
024 7 _ |a altmetric:1848656
|2 altmetric
024 7 _ |a pmid:24116648
|2 pmid
037 _ _ |a FZJ-2015-03510
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Zheng, Wenwei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular recognition of DNA by ligands: Roughness and complexity of the free energy profile
260 _ _ |a Melville, NY
|c 2013
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434028914_12155
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Vargiu, Attlio Vittorio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rohrdanz, Mary A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 3
|u fzj
700 1 _ |a Clementi, Cecilia
|0 P:(DE-HGF)0
|b 4
|e Corresponding Author
773 _ _ |a 10.1063/1.4824106
|g Vol. 139, no. 14, p. 145102 -
|0 PERI:(DE-600)1473050-9
|n 14
|p 145102 -
|t The @journal of chemical physics
|v 139
|y 2013
|x 0021-9606
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201205/files/1.4824106.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201205
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145614
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-5-20120330


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21