000201207 001__ 201207
000201207 005__ 20240625095129.0
000201207 0247_ $$2doi$$a10.1021/ct400374n
000201207 0247_ $$2ISSN$$a1549-9618
000201207 0247_ $$2ISSN$$a1549-9626
000201207 0247_ $$2WOS$$aWOS:000323193500054
000201207 0247_ $$2altmetric$$aaltmetric:1613725
000201207 037__ $$aFZJ-2015-03512
000201207 041__ $$aEnglish
000201207 082__ $$a540
000201207 1001_ $$0P:(DE-Juel1)146008$$aDreyer, Jens$$b0$$eCorresponding Author
000201207 245__ $$aRole of the Membrane Dipole Potential for Proton Transport in Gramicidin A Embedded in a DMPC Bilayer
000201207 260__ $$aWashington, DC$$bAmerican Chemical Society (ACS)$$c2013
000201207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434030061_12148
000201207 3367_ $$2DataCite$$aOutput Types/Journal article
000201207 3367_ $$00$$2EndNote$$aJournal Article
000201207 3367_ $$2BibTeX$$aARTICLE
000201207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201207 3367_ $$2DRIVER$$aarticle
000201207 520__ $$aThe membrane potential at the water/phospholipid interfaces may play a key role for proton conduction of gramicidin A (gA). Here we address this issue by Density Functional Theory-based molecular dynamics and metadynamics simulations. The calculations, performed on gA embedded in a solvated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membrane environment (about 2,000 atoms), indicate that (i) the membrane dipole potential rises at the channel mouth by ∼0.4 V. A similar value has been measured for gA embedded in a DMPC monolayer; (ii) the calculated free energy barrier is located at the channel entrance, consistent with experiments comparing gA proton conduction in different bilayers. The electronic structures of the proton ligands (water molecules and peptide units) are similar to those in the bulk solvent. Based on these results, we suggest an important role of the membrane dipole potential for the free energy barrier of proton permeation of gA. This may provide a rationale for the large increase in the rate of proton conduction under application of a transmembrane voltage, as observed experimentally. Our calculations might suggest also a role for proton desolvation for the permeation process. This role has already emerged from EVB calculations on gA embedded in a model membrane.
000201207 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201207 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201207 7001_ $$0P:(DE-HGF)0$$aZhang, Chao$$b1
000201207 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b2
000201207 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$eCorresponding Author
000201207 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/ct400374n$$gVol. 9, no. 8, p. 3826 - 3831$$n8$$p3826 - 3831$$tJournal of chemical theory and computation$$v9$$x1549-9626$$y2013
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.pdf$$yRestricted
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.gif?subformat=icon$$xicon$$yRestricted
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201207 8564_ $$uhttps://juser.fz-juelich.de/record/201207/files/ct400374n.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201207 909CO $$ooai:juser.fz-juelich.de:201207$$pVDB
000201207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201207 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201207 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201207 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201207 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146008$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201207 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-Juel1)136680$$aGerman Research School for Simulation Sciences$$b1$$kGRS
000201207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201207 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201207 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201207 920__ $$lyes
000201207 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201207 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201207 980__ $$ajournal
000201207 980__ $$aVDB
000201207 980__ $$aI:(DE-Juel1)GRS-20100316
000201207 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201207 980__ $$aUNRESTRICTED
000201207 981__ $$aI:(DE-Juel1)INM-9-20140121
000201207 981__ $$aI:(DE-Juel1)IAS-5-20120330