001     201207
005     20240625095129.0
024 7 _ |2 doi
|a 10.1021/ct400374n
024 7 _ |2 ISSN
|a 1549-9618
024 7 _ |2 ISSN
|a 1549-9626
024 7 _ |2 WOS
|a WOS:000323193500054
024 7 _ |a altmetric:1613725
|2 altmetric
037 _ _ |a FZJ-2015-03512
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)146008
|a Dreyer, Jens
|b 0
|e Corresponding Author
245 _ _ |a Role of the Membrane Dipole Potential for Proton Transport in Gramicidin A Embedded in a DMPC Bilayer
260 _ _ |a Washington, DC
|b American Chemical Society (ACS)
|c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1434030061_12148
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The membrane potential at the water/phospholipid interfaces may play a key role for proton conduction of gramicidin A (gA). Here we address this issue by Density Functional Theory-based molecular dynamics and metadynamics simulations. The calculations, performed on gA embedded in a solvated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membrane environment (about 2,000 atoms), indicate that (i) the membrane dipole potential rises at the channel mouth by ∼0.4 V. A similar value has been measured for gA embedded in a DMPC monolayer; (ii) the calculated free energy barrier is located at the channel entrance, consistent with experiments comparing gA proton conduction in different bilayers. The electronic structures of the proton ligands (water molecules and peptide units) are similar to those in the bulk solvent. Based on these results, we suggest an important role of the membrane dipole potential for the free energy barrier of proton permeation of gA. This may provide a rationale for the large increase in the rate of proton conduction under application of a transmembrane voltage, as observed experimentally. Our calculations might suggest also a role for proton desolvation for the permeation process. This role has already emerged from EVB calculations on gA embedded in a model membrane.
536 _ _ |0 G:(DE-HGF)POF2-899
|a 899 - ohne Topic (POF2-899)
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Zhang, Chao
|b 1
700 1 _ |0 P:(DE-Juel1)146009
|a Ippoliti, Emiliano
|b 2
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 3
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2166976-4
|a 10.1021/ct400374n
|g Vol. 9, no. 8, p. 3826 - 3831
|n 8
|p 3826 - 3831
|t Journal of chemical theory and computation
|v 9
|x 1549-9626
|y 2013
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201207/files/ct400374n.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201207
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)146008
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-Juel1)136680
|a German Research School for Simulation Sciences
|b 1
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)146009
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-5-20120330


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21