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We investigate the coevolution dynamics of node activities and coupling strengths in coupled chaotic
oscillators via a simple threshold adaptive scheme. The coupling strength is synchronous activity regulated,
which in turn is able to boost the synchronization remarkably. In the case of weak coupling, the globally
coupled oscillators present a highly clustered functional connectivity with a power-law distribution in the tail
with ��3.1, while for strong coupling, they self-organize into a network with a heterogeneously rich connec-
tivity at the onset of synchronization but exhibit rather sparse structure to maintain the synchronization in noisy
environment. The relevance of the results is briefly discussed.
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Complex networks pervade all sciences and have proven
to be productive to understand the sophisticated collaborative
dynamics across many disciplines �1�. One interesting phe-
nomenon observed in real-world networks is that the evolu-
tion of the connectivity is closely related to the activities of
their nodes and vice versa. For example, recent neurophysi-
ological evidences reveal that the development of neuron
connections in central nervous systems is modulated by the
neural activity �2�, and the activity relies on the neural cir-
cuits conversely. The coevolution of the network connectiv-
ity and node activity has also been found in social �3,4�,
ecological �5�, and epidemic networks �6,7�, where agents or
species learn from the state of networks and adapt their be-
haviors accordingly for interest or survival, which in turn
reshape the structure of networks. Such coevolutionary or
adaptive networks can provide us a more complete under-
standing of the collective dynamics, and from this perspec-
tive many interesting phenomena have been revealed, such
as self-organized criticality and phase transitions �for a re-
view, see �8��.

So far, the study of coevolutionary dynamics of coupled
chaotic oscillators is just at its beginning, with special inter-
ests in maintaining or enhancing synchronization as well as
the spontaneous structure formation. In �9� a potential-based
adaptation strategy was proposed to maintain synchroniza-
tion in the presence of exogenous unpredictable influences,
and in �10� an adaptive feedback scheme was used to en-
hance synchronization by reducing the network heterogene-
ity. These two adaptive methods are though a set of auxiliary
differential equations to control the network coupling dy-
namics. On the other hand, a globally coupled chaotic map
with Hebbian-like dynamic connections can self-organize
into an ever changing network structure of two distinct
classes of nodes but only in asynchronous region �11�. Here,
an issue of importance that arises is to elucidate the role of
the interplay between the synchronous activity and the con-
nectivity in such networks, which is also very relevant to
brain dysfunctions. For instance, it is well acknowledged that

the emergence of several psychiatric disorders is accompa-
nied by pathological network topology and abnormal syn-
chrony in brain, while the underlining mechanism at the net-
work level is largely unknown �e.g., schizophrenia,
Alzheimer disease, and epilepsy� �12�. Here considering a
simple model as a first step we attempt to make a progress
toward this goal.

In this paper, we present a threshold adaptive coupling
scheme according to local synchronous activities, and focus
on the impacts of the adaptation on network synchronization
and self-organization. We mainly show that the adaptation
facilitates the network synchronization remarkably, and the
network self-organizes into distinct connectivities in differ-
ent cases of synchronous activities.

Let us consider a network of N coupled identical chaotic
oscillators

ẋi = F�xi� + �
j=1

N

aij�ij�t��H�x j� − H�xi�� , �1�

where x�Rm is the m-dimensional vector describing the
state of nodes, F�x� :Rm→Rm governs the local dynamics of
the oscillators, H�x� :Rm→Rm is a vectorial output function,
and A= �aij� is the binary adjacency matrix determined by the
underlining physical or structural connections.

Here, �ij�t� is the time-varying coupling strength depend-
ing on synchronous activities of the two linked oscillators.
Considering there is a limited resource in the real world, it is
reasonable to assume that the coupling is completely acti-
vated only when some thresholds are exceeded �e.g., spike
discharge for neurons�. The following are the connection
strengths by incorporating this dynamic factor:

�ij = �0S� ��wij�
��wij� �

− l	 , �2�

where �0 is the maximal strength of coupling that the inter-
acting channel can provide. The coupling dynamic is mod-
eled by a sigmoid function S�x�=1 / �1+e−�x�, with � control-
ling the smoothness between 0 and 1 �a limiting version of
S�x� is the Heaviside function as �→+�� �13�. Hereafter, we
choose �=10. �wij represents the state difference of the di-*hongbinh@seu.edu.cn
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rectly coupled dynamical variable between nodes i and j, and
�wij� are those corresponding to the rest variables. Here we
call ��wij� / ��wij� � the state difference ratio �SDR�. The pa-
rameter l is the threshold that controls the activation of the
coupling and a larger l means less chance of activation. In
the following we will show that the adaptive coupling de-
scribed by the simple Eq. �2� can boost network synchroni-
zation dramatically, no other auxiliary equations are needed.

For the sake of simplicity, we begin with the case of two
unidirectionally coupled chaotic oscillators �i.e., a12=0 and
a21=1 with N=2�. In this case, the stability of synchronous
states can be assessed by studying the variational equations
of Eq. �1� with respect to the synchronous manifold
ẋ1=F�x1�

�ẋ = �DF�x1� − �21DH�x1���x , �3�

where �x=x1−x2 and D is the Jacobian operator. The stabil-
ity problem is then reduced to calculate the largest Lyapunov
exponent �LLE� �=limt→�

1
t ln� �x�t�

�x�0� � of Eq. �3�; the synchro-
nous state is stable if ��0, and unstable if ��0. Further-
more, according to the definition of LLE, a more negative �
will lead to a higher converging speed of synchronization.

To be specific, we adopt the chaotic Rössler
oscillator throughout the study when not stated otherwise:
x= �x ,y ,z� and F�x�= �−y−z ,x+0.2y ,0.2+z�x−7��, with
H�x�= �x ,0 ,0�, in this case w=x and w�= �y ,z�. The thresh-
old l is chosen such that SDR can reach the threshold in
typical time scale of the oscillator. A proper choice can be
made by referring to the plot of SDR for two completely
uncoupled oscillators and l is chose in the range of SDR, in
the present case we set l=10 �see Fig. 1�a��. In Eq. �2� � . �
denotes the norm defined as ��wij� �=max���yij� , ��zij��,
though the results described below do not change qualita-
tively for other choices of norm.

It is known that the synchronization for the case of
x-coupled Rössler oscillators with traditional constant cou-

pling �without S�x� in Eq. �2�� is only stable for intermediate
coupling strength due to the short or long wavelength bifur-
cation �14� and the stable synchronous region is thus
bounded �0

1����0
2 �left inset in Fig. 1�b��. Surprisingly, the

synchronization ability is strikingly boosted when the cou-
pling strength is modulated by the S�x�.

Figure 1�b� reports the performance by varying �0. The
first crucial observation in Fig. 1�b� is that the second cross
point �0

2 disappears and the stable region becomes un-
bounded. Also, the absolute value of LLE shown in Fig. 1�b�
is about one order larger than that of constant coupling
case, which means a much higher converging speed for
proper �0 �note the logarithmic definition of LLE�. Another
quantity we concern is the effective coupling cost consumed
in reality. A convenient way is to define the average coupling
strength 
��=lim	→�

1
	 �t0

t0+	�21dt. The result in Fig. 1�b�
shows that actually very low coupling cost is needed al-
though the maximal coupling strength �0 that the channel
provides could be extremely strong. More interestingly, there
is a linear relationship between � and 
��, which can be well
fitted by the constant vector coupling case �right inset in
Fig. 1�b��. This behavior can be explained easily. When in
inactivation for duration denoted by ti, the two oscillators
are uncoupled and the variable difference �x evolves as
e�0ti, where �0 is the LLE for the sole oscillator. And
when the coupling is fully activated for duration ta, since
now �x�10 max��y ,�z�, the difference �x��x, and
�ẋ�−�0�x if �0 is not too small. These suggest that
�x in this process evolves as e−�0ta. Taken together,
the average evolution then can be expressed by
�x�t�
exp���0

ti

ti+ta
−�0

ta

ti+ta
�t�, and by taking into account

ti
 ta and �0
ta

ti+ta
= 
�� we thus have

� � �0 − 
�� , �4�

which indicates that the adaptive coupling is as effective as
the constant vector coupling case �H�x�=x= �x ,y ,z��.
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FIG. 1. �Color online� �a� The plot of ��w12� / ��w12� � for two uncoupled Rössler oscillators. �b� LLE � �black solid� and average coupling
strength 
�� �red dashed� as a function of �0 ��0

c �1.6�. Left inset: LLE with the constant coupling strength as a function of �0. Right inset:
LLE � vs average coupling strength 
�� �red fitted line corresponds to constant vector coupling case�. Time step �t=0.001. �c� Coevolution
in transition to synchronization in two unidirectional coupled Rössler oscillators with �0=10. Upper panel: time evolution of coupling
strength and variable differences; lower panels: time series.

CHEN et al. PHYSICAL REVIEW E 82, 056115 �2010�

056115-2



Figure 1�c� illustrates the coevolution of the coupling
strength and node activities in typical transition to synchro-
nization. Most of the time, the connection strength is very
small and the interacting channel is closed. Once the inter-
acting channel is triggered �see, e.g., an onset of the coupling
activation indicated by the dashed line at t=2�, the increased
coupling strength can effectively reduce their state differ-
ences.

In fact, the mechanism discussed above is general and not
restricted to the specific choice of chaotic oscillators. In
numerical simulations, we found that it can be applied
to a variety of typical chaotic oscillators, such as
Lorenz oscillators, Chen systems, Chua’s circuit systems,
etc. As another example, z-coupled Lorenz equations F�x�
= �10�y−x� ,28x−y−xz ,xy−8 /3z�, with H�x�= �0,0 ,z�,
show that the synchronization and anti-synchronization
coexist in noisy environments due to the symmetry
�x ,y ,z�→ �−x ,−y ,z� for constant coupling and the negative
region of the LLE is bounded �15�. Nevertheless, the LLE
with the dynamic coupling �Eq. �2�� become wide stable re-
gion, and more importantly the antisynchronization is now
excluded, see Fig. 2.

Now we turn to consider a globally coupled network with

N=1000, in which any two nodes are assumed to have a
structural channel �i.e., aij =1, ∀i� j�. Because the network
is inherently dynamic in connection strengths, here we focus
on the pattern of real-time connectivity, i.e., functional con-
nectivity. To do this, we define that two nodes are function-
ally connected if their coupling strength exceeds a predeter-
mined value �c. In the simulation, we set �c=�0 /100 �16�.

We begin with weak synchronization with �0=0.01. In
this case, huge networks can be synchronous even for very
small �0 �in simulation �0��0

c /N�. However, due to the low
synchronous speed, very long converging time is required,
and thus the global synchronization is unlikely to happen in
reasonably short time. In this sense, we say weak synchroni-
zation. In numerical simulation, we find that the resulting
functional network displays a continuous, ever changing
evolution, in which a node is a hub at one time could become
a peripheral, even isolated one at another time. The degree
distribution p�k� shows a skewed distribution in the tail ap-
proaching p�k�
k−�, with ��3.1 �Fig. 3�a��. This power
law implies that there is always a small fraction of nodes
emerging as “leaders” in the evolution and the functional
networks have the property of scale-free �18�. Further studies
show that the clustering coefficient of functional networks is
much lager than its random equivalent network �Table I�,
obtained by randomly rewiring the links of the original net-
works while keeping their total degree. A typical snapshot of
the connectivity is given in Fig. 3�b�, which is composed of
a giant component, some small clusters, and some isolated
nodes.

Different from the weak synchronous case, the strong syn-
chronization induced by large coupling can rapidly reduce
the state difference, and the global synchronization is thus
expected in short time. Figure 4 reports coevolutionary be-
haviors with �0=1 by considering the background noise as
well as local external stimulus. As shown in Fig. 4�a�, the
synchronous activities can be classified into three phases:
onset, maintenance, and stimulus. In the onset phase �phase
I�, the synchronous error e�t� decreases sharply to the limit-
ing level �determined by the noise level as well as the net-

FIG. 3. �Color online� �a� Connectivity distribution for weak
synchronization �average over 100 realizations�. �b� A snapshot of
the evolving network with N=100 and �=0.1 �17�.
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FIG. 2. �Color online� �a� LLE � as a function of �0 for z-coupled Lorenz oscillators. �b� Time series with �0=10 in noisy background

10−5. Upper panel: constant coupling; lower panels: dynamic coupling with Eq. �2�. Here the threshold l=2.

TABLE I. Statistical properties of the resulting functional net-
works for weak and strong synchronization �phases I �19� and II�.

Sync activities Weak sync Strong sync I Strong sync II


k� 94.1 137.0 3.7

C 0.6 0.52 0.19

Crand 0.094 0.137 0.0033
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work size N�, accompanied by the high level of channel ac-
tivations, which is reflected by the increase in average
coupling strength and the rich network connectivity �Table
I�. The degree distribution shows that the functional network
is heterogeneous but not scale-free, and considerable parts of
nodes have large degree �Fig. 4�b��. Once e�t� reaches the
limiting level, only very low coupling cost is needed to

maintain the synchronous state �phase II�, and the resulting
network is rather sparse �Table I�. However, such coevolu-
tionary network is robust and very economical to back-
ground noise, but costly to external stimulus �phase III�, even
a local stimulus can trigger a burst of intensive activation of
coupling. Interestingly, the coupling channels of the network
are not activated immediately when they receive the stimu-
lus, but keep its low channel activity for a delay until the
right time. Statistical properties in Table I show that the av-
erage degree 
k� decreases dramatically in phase II compared
to that of phase I, and the clustering coefficients C in strong
synchronization cases is smaller than that of weak case, but
much larger than their random equivalent networks Crand.

In summary, we have investigated coevolutionary dynam-
ics by incorporating a threshold coupling and found that the
adaptive strategy can give rise to unbounded stable region
for chaotic synchronization, high converging speed, and low
effective coupling cost. Within the model, the globally
coupled oscillators produce very different functional net-
works in different cases of network synchronous activities.
For the weak coupling, the connectivity shows a power-law
distribution in the tail with high clustering, while for strong-
coupling case, the network self-organizes into heteroge-
neously rich connectivity at the onset of synchronization but
exhibits rather sparse structure to maintain synchronization
in noisy environment. However, the adaptive network syn-
chronization or connectivity is economical to background
noise, but costly to external stimulus.

Currently, there is yet little known about the interdepen-
dency between the network connectivity and the node activ-
ity �1�. We believe that our model provides a promising
framework for understanding the realistic networked sys-
tems, e.g., some brain diseases �20,21�, in which different
�health or abnormal� brain states may correspond to different
coupling circumstances. In any case, a more in-depth under-
standing of the mechanisms of brain diseases will be possible
only through the combination of theoretical and experimental
studies and remains a big challenge in future.
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