001     201242
005     20210129215704.0
024 7 _ |a 10.1371/journal.pone.0012514
|2 doi
024 7 _ |a 2128/8717
|2 Handle
024 7 _ |a WOS:000281480900007
|2 WOS
037 _ _ |a FZJ-2015-03547
082 _ _ |a 500
100 1 _ |a Fischer, Thomas
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Temporo-Spatial Dynamics of Event-Related EEG Beta Activity during the Initial Contingent Negative Variation
260 _ _ |a Lawrence, Kan.
|c 2010
|b PLoS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433829568_26783
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In the electroencephalogram (EEG), early anticipatory processes are accompanied by a slow negative potential, the initial contingent negative variation (iCNV), occurring between 500 and 1500 ms after cue onset over prefrontal cortical regions in tasks with cue-target intervals of about 3 s or longer. However, the temporal sequence of the distributed cortical activity contributing to iCNV generation remains unclear. During iCNV generation, selectively enhanced low-beta activity has been reported. Here we studied the temporal order of activation foci in cortical regions assumed to underlie iCNV generation using source reconstruction of low-beta (13–18 Hz) activity. During the iCNV, elicited by a cued simple reaction-time task, low-beta power peaked first (750 ms after cue onset) in anterior frontal and limbic regions and last (140 ms later) in posterior areas. This activity occurred 3300 ms before target onset and provides evidence for the temporally ordered involvement of both cognitive-control and motor-preparation processes already at early stages during the preparation for speeded action.
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 1
|u fzj
700 1 _ |a Diers, Kersten
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brocke, Burkhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Birbaumer, Niels
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1371/journal.pone.0012514
|g Vol. 5, no. 9, p. e12514 -
|0 PERI:(DE-600)2267670-3
|n 9
|p e12514
|t PLoS one
|v 5
|y 2010
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201242/files/journal.pone.0012514.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201242
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131693
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21