001     201244
005     20210129215705.0
024 7 _ |a 10.1140/epjb/e2010-00211-6
|2 doi
024 7 _ |a 1434-6028
|2 ISSN
024 7 _ |a 1434-6036
|2 ISSN
024 7 _ |a WOS:000281741600013
|2 WOS
037 _ _ |a FZJ-2015-03549
082 _ _ |a 530
100 1 _ |a Chen, L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Facilitated synchronization of complex networks through a discontinuous coupling strategy
260 _ _ |a Berlin
|c 2010
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433830063_26777
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Synchronization stability in complex networks is a topic of theoretical interest and practical importance. Increasing effort has been devoted to the enhancement of synchronizability of networks, or more specifically, the design of synchronizable networks. However, most previous attempts turn the coupling weight/gradient or change the topological interactions, which sometimes is not manageable. In this paper, by adopting a simple kind of discontinuous coupling strategy: the uniform on-off coupling scheme, with on-off period being comparable to the timescale of node dynamics, the problem is solved within the framework of the master stability function. The results show that, this strategy can greatly increase the stable region of synchronization, which means the size of synchronizable networks can be much larger than the traditional case, without any changes of their connections. Furthermore, the synchronization speed can be accelerated considerably, which is even higher than the previous optimal case. The mechanism of the facilitation is revealed and shows that the continuous coupling in fact is one of the worst choices for synchronization in the view of discontinuous coupling strategy. The coupling cost required for synchronization is also examined, which is approximately the same as the continuous coupling
536 _ _ |a 331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)
|0 G:(DE-HGF)POF2-331
|c POF2-331
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Qi, Guanxiao
|0 P:(DE-Juel1)131702
|b 1
|u fzj
700 1 _ |a Huang, H. B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Qi, G. X.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, H. J.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1140/epjb/e2010-00211-6
|g Vol. 76, no. 4, p. 625 - 635
|0 PERI:(DE-600)1459068-2
|n 4
|p 625 - 635
|t The @European physical journal / B
|v 76
|y 2010
|x 1434-6028
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201244/files/art_10.1140_epjb_e2010-00211-6.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201244
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131702
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-331
|2 G:(DE-HGF)POF2-300
|v Signalling Pathways and Mechanisms in the Nervous System
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21