001     201246
005     20250129092437.0
020 _ _ |a 978-1-4799-0534-8
037 _ _ |a FZJ-2015-03551
100 1 _ |a Streun, M.
|0 P:(DE-Juel1)133944
|b 0
|e Corresponding Author
111 2 _ |a 2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE
|g NSS/MIC
|c Seoul
|d 2015-10-27 - 2015-11-02
|w Korea
245 _ _ |a PET Scintillator Arrangement on digital SiPMs
260 _ _ |c 2014
300 _ _ |a 4
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1435912487_13798
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The common way to build a PET detector is to place an array of scintillator elements on top of a photo detector. In order to achieve high spatial resolution the scintillator footprints are often smaller than the pixel size of the photodetector. This requires light sharing and some kind of algorithm like Anger-Logic in order to identify the correct scintillator element in which the event took place. The digital Silicon Photomultiplier DPC3200-22-44 (Philips Digital Photon Counting) is a fully digital photo sensor device [1]. Each pixel consists of 3200 individual micro cells which are charged and read out under digital control. The device (Tile) is organized as an array of 8 by 8 pixels each of 3.9x3.9 mm2 size and is realized as a PCB equipped with 16 dice. One die provides four pixels together with the corresponding triggering, validation and readout electronics. Depending on the configuration the detection of an event on one die can cause the other dice to transmit their data as well (neighbor logic). The obvious solution of using neighbor logic and a scintillator matrix with light guide covering the whole tile shows some drawbacks. After each event all 16 dice will be busy and all pixels need to be read out. This results in increased dead time and a lot of data. Furthermore it turned out that sometimes pixels are missing because dice were already busy and could not transmit data when the event was detected. This will complicate the identification of the event position. A better performance can be obtained when the light is shared only within the four pixels of each die and the dice work independent from each other. We investigated the positioning capability of different scintillator matrices and light guides. These are arranged in such a way, that a single die can only receive the light from a 4 by 4 array of LYSO crystals which covers exactly the die dimensions. The results show that clear crystal identification can be achieved with such an arrangement. [1] Haemisch et al., Physics Procedia 37 (2012) 1546
536 _ _ |a 89582 - Plant Science (POF2-89582)
|0 G:(DE-HGF)POF2-89582
|c POF2-89582
|f POF II T
|x 0
700 1 _ |a Nöldgen, Holger
|0 P:(DE-Juel1)133922
|b 1
700 1 _ |a Erven, A.
|0 P:(DE-Juel1)130632
|b 2
|u fzj
700 1 _ |a Espana, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jokhovets, L.
|0 P:(DE-Juel1)156472
|b 4
|u fzj
700 1 _ |a Marcinkowski, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Peters, C.
|0 P:(DE-Juel1)158061
|b 6
|u fzj
700 1 _ |a Ramm, M.
|0 P:(DE-Juel1)133929
|b 7
|u fzj
700 1 _ |a Schramm, N.
|0 P:(DE-Juel1)133938
|b 8
|u fzj
700 1 _ |a Wüstner, Peter
|0 P:(DE-Juel1)133959
|b 9
700 1 _ |a Vandenberghe, S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kemmerling, G.
|0 P:(DE-Juel1)133902
|b 11
|u fzj
700 1 _ |a van Waasen, S.
|0 P:(DE-Juel1)142562
|b 12
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201246/files/ConfRec.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201246
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133922
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130632
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156472
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)158061
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)133929
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)133938
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)133959
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)133902
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)142562
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF2-89580
|0 G:(DE-HGF)POF2-89582
|2 G:(DE-HGF)POF3-890
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89582
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21