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Abstract

The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features,
including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative
analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and
macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity
patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both
species involving a highly overlapping set of regions. This structural backbone, important for mediating information across
the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary
aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human
research.
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Introduction

Over a century of research has revealed that the brain is

inhomogeneous and can be divided based on functional, macro-

and micro- structural criteria [1–4]. The regions resulting from

such a division are linked through fibre bundles that constitute the

neural substrate for the exchange of information between the

regions [5]. Early investigators highlighted the importance of the

structural connections of a region to its functions, thus establishing

the ground of structure-function dependencies and pinpointing the

importance of brain connectivity for fundamental and clinical

research [1,6]. In recent years, studies offered evidence for the

close relation of structural connectivity and function in the

mammalian brain [7–9]. Hence, regions with similar connectivity

might be involved in similar functions, and large scale connectivity

constitutes a guide to cognition [10].

Due to ethical and methodological reasons our most detailed

knowledge of the brain originates from animal research.

Specifically, the macaque brain serves as a model for the human

brain, but such extrapolations might be inaccurate due to

rewiring and/or expansion during primate evolution [11–13]

masking out unique features of the human brain [14]. This has

important consequences for translating macaque research to

humans, which is valuable for cognitive, systems and clinical

neuroscience. Hence, there is the need for examining if classical

homology criteria such as similarity of connectivity patterns

[15,16] are satisfied.

Diffusion weighted magnetic resonance imaging (dwMRI) is

used for the examination of the structural connectivity of the brain

in vivo and for comparing the structural connectivity of the human

and macaque brain [17–19]. However, up to date studies focus on

a small subset of brain regions, examining particular fasciculi or

lack direct quantitative interspecies comparisons. Hence, interspe-

cies similarities and discrepancies of connectivity patterns and

topological features at the whole brain level remain largely

concealed.

In addition, dwMRI is used for constructing in vivo the whole

brain ‘‘wiring diagram’’ of humans, i.e. the human connectome

[20]. Connectome analysis treats the brain as a complex network

and employs tools from network science for unravelling key

properties that are pivotal for its proper function and uncovering

topological alterations related to mental disorders [21–24]. Recent

work highlights key properties of the macroscale connectivity of

the macaque brain [25] hinting at potential differences and

similarities between the ‘‘connectome properties’’ of the two

species, but with no explicit quantitative comparisons taking place.

To complement and surpass limitations of previous comparative

studies, we perform a direct comparative quantitative analysis of

the macroscale connectional architecture of the macaque and

human brain. We adopt a macroscale parcellation scheme called

the Regional Map (RM) [4,26] and we construct whole brain

species-specific connectomes, with the aid of dwMRI for the

human and a neuroinformatics database for the macaque brain.

Subsequently, we quantify the similarity of connectivity patterns,
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global topological features, and topology of the brain regions of the

two species. This approach succeeds in uncovering preserved and

divergent features of the macroscale connectional architecture of

the brain of these two primate species.

Materials and Methods

Whole brain parcellation scheme
For the whole brain examination of both species we employed a

map specifically designed for this purpose, the RM [4,26] (Fig. 1

A). This map consists of putative homologues between the two

species based on structural, macroscopic and functional criteria. Its

level of coarseness is dictated from the size of regions that are

discernible in both human and macaque brains [4]. No

connectivity criteria were used for the delineation of the various

regions constituting the RM. The RM was delineated on the F99

standard brain which is based on an MRI scan of one macaque

brain. Subsequently, the RM was morphed to match the human

brain by using macroscopic and functional landmarks [27,28]. In

total 82 regions (41 for each hemisphere) constituted the RM that

we used (Table S1). We should note that the use of the RM is

necessitated by the lack of an unequivocal ‘‘standard’’ microstruc-

ture based map for even the brain of one species, let alone a

‘‘standard’’ microstructure based comparative map [29,30].

Moreover, the regions constituting the RM are larger than regions

defined based on e.g. cytoarchitecture, the so-called cortical fields,

and one RM region might include various such cortical fields. This

level of granularity of the RM was deliberately chosen in order to

circumvent controversial issues with respect to macaque-human

cortical field homologies across the whole brain, like the presence

of more cortical fields in the human brain and/or duplication of

certain cortical fields [4,29,30,31].

Macaque whole brain connectome
We used the RM and the CoCoMac database (http://cocomac.

g-node.org) to assemble the whole brain connectome of the

macaque. The database was accessed on December 2010. Briefly,

the CoCoMac database consists of entries describing the presence

of a structural connection between two regions, as revealed by

tracing studies, and have the format: region A has an efferent

connection with region B. The database contains over 400 studies

spanning several decades and thus represents a current best

estimate of the macroscale connectivity of the macaque brain.

Different researchers use different maps with divergent nomen-

clature. In order to link the different maps the database contains

relation codes with the format: Region A of map X is identical to

region B of map Y. Dedicated algorithms and algebra is used to

map regions of one map to regions of a ‘‘reference’’ map [32,33].

In the current study, the RM functioned as the ‘‘reference’’ map

and thus available connectivity information contained in the

database was represented as an NxN connectivity matrix, where

N=82 the regions constituting the RM. A non-zero matrix entry

Aij denotes the presence of a connection from region i and j. In

order to compare the connectivity of the macaque and human

brain (see below), and since directionality of structural connections

cannot be inferred in vivo in the human brain, the directed

connectivity matrix of the macaque was symmetrized and

binarized by taking into account all connections irrespective of

their strength. The resulting macaque connectome (MC) consisted

of 1857 undirected connections/edges between 82 regions/nodes.

The binarization step is necessary since the connectomes of the

two species were assembled from different modalities. DwMRI

and tractography is not adequate for inferring density of

connections [34] contrary to invasive tracing techniques in

monkey studies. This limitation and the fact that certain network

metrics employed for cross-species comparisons involve cross-

matrix operations (see below), do not allow the use of a weighted

approach, since the weights obtained from the different modalities

are not comparable (see also Discussion).

Human whole brain connectome
Data acquisition. Whole brain scans of five healthy subjects

(2 females, age mean: 29.4 std: 3.2) were acquired after obtaining

written informed consent. Data acquisition and preprocessing are

described in [24]. Briefly, data were collected in a Siemens 3T

MAGNETOM Allegra MR scanner equipped with a high slew-

rate head gradient-coil (amplitude 40 mT/m, slew rate 400 T/m/

s) and an 8-channel phased-array head RF-coil was used to

acquire the data. A double refocused spin-echo diffusion sequence

was used to acquire 131 volumes of data, with TR=6600 ms,

TE=94 ms, b-value = 3000 s/mm2, 88688 matrix, 52 axial slices,

2.562.562.5 mm3 voxels, partial Fourier = 6/8 and a bandwidth

of 2840 Hz/pixel (echo-spacing 0.4 ms). A total of 120 diffusion

gradient directions were acquired with 11 unweighted (b = 0 s/

mm2) volumes acquired after every 12 gradient directions and

including the first and last volumes. A T1-weighted 3D MPRAGE

scan (TR=2250, TE= 2.6 ms, flip angle = 9u, 2566256 matrix,

192 sagittal slices, 16161 mm voxels) was acquired for gray/white

matter boundary segmentation.

Voxel-wise diffusion model estimation. A multi-direction

high angular resolution diffusion imaging based model has been

used to estimate the voxel-wise orientation of neuronal fibers.

Constrained spherical deconvolution fiber orientation distributions

were reconstructed [35] over a five-fold tessellated icosahedron.

This technique was selected for its robustness in estimating

orientational distributions from high angular resolution diffusion

imaging data. Moreover, fiber orientation distributions represent

actual fiber orientation distributions rather than water-bound spin

displacements, which leads to stable and accurate local orienta-

tions that are very beneficial for both local and global tractography

purposes [36].

Author Summary

What are the commonalities and differences of human
brains when compared to the brains of other primates?
The brain can be conceived as a complex network. Its
topological properties constrain its function. Ethical and
technical reasons necessitate the use of animal brains, like
the macaque monkey, as models for the human brain.
However, evolutionary changes, including ‘‘brain rewiring’’,
might result in unique human features. Hence, a detailed
and quantitative comparative analysis of the connectivity
of the brains of the two species is needed. Here, we
undertake this task by adopting techniques analogous to
those used in comparative studies in other scientific fields.
Our approach reveals converging but also diverging wiring
patterns. The brain of the two species as a whole is
similarly wired. The majority of the brain regions appear to
have evolutionary conserved connectivity patterns while
for certain regions this appears not to be the case. We also
uncover an evolutionary conserved ‘‘structural backbone’’
in the brain of the two species. Our findings highlight
common and unique ‘‘wiring properties’’ of the brains of
these two primate species and offer a quantitative basis for
translating findings from macaque research to human
research.

Comparative Analysis of Connectional Architecture
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Tractography algorithm and parameters. A local proba-

bilistic tractography algorithm was used in this study. The

employed algorithm uses orientations sampled from the fiber

orientation distributions at each step and initializes a great number

of streamlines per seed point in a way similar to the PICo

algorithm [37]. This tractography algorithm has shown good

performance based on empirical data [24] and phantom based

evaluations [38]. Per seed point, 3000 streamlines were initiated

within a sphere whose center corresponded to the center of every

white matter boundary voxel and whose radius has been set to half

the voxel size (1.25 mm). The step size was set to 1 mm and the

angular thresholds to 30u.

Fractional anisotropy maps were thresholded at a value of 0.1 in

order to obtain the white matter waypoint masks. These are binary

masks containing only those voxels where fibers are allowed to

propagate. The tractography algorithm used in the present study

was run in original diffusion data space. Therefore, we have

chosen to use median filtered fractional anisotropy masks

computed in that same space, instead of white matter masks

obtained from T1-weighted volumes segmentation, in order to

achieve maximum integrity and alignment of white matter masks

to the diffusion data. To avoid influences on fractional anisotropy

such as partial volume effects at the white/grey matter boundary

and in those voxels where more than two diffusion directions are

Figure 1. Schematic depiction of the main points of the analysis. A. The RM was used in order to construct the connectivity matrices of the
two species, i.e. the MC and HC (panel B). The resulting connectivity matrices have i = 82 rows and j = 82 columns. B. Example of the calculation of the
HCS for region i = 1. The entries of row 1 from the MC and row 1 from HC were used, resulting in entry HCSi = 1. The same procedure was used for all
regions, resulting in a 1682 vector HCS containing the HCS indexes of all the regions. C. Example of calculation of the HMIS for region i = 1. The MC
and HC were used for the separate calculation of the matching index matrices MIij (one for each species separately). The HMIS index for region i = 1 is
calculated from the entries of row 1 of the matching index matrices of the two species. The procedure is repeated for all regions, resulting in a 1682
vector HMIS containing the HMIS indexes of all the regions. D. Toy networks demonstrating differences of the HCS and the HMIS. Given two
hypothetical ‘‘brains’’ that form a network with 4 regions and 4 connections the HCS and HMIS indexes are calculated for brain region A. On the one
hand, the HCS index is equal to 1 (perfect similarity), since region A in both networks is connected exactly to the same regions, i.e. nodes B, C and D.
On the other hand, the HMIS index is20.5, indicating a divergence of the connectivity similarity profiles of region A in networks/brains 1 and 2. These
discrepancies arise from the ‘‘rewiring’’ of the connection marked with an arrow.
doi:10.1371/journal.pcbi.1003529.g001

Comparative Analysis of Connectional Architecture
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reconstructed a 3-dimensional median filter has been applied to

the thresholded white matter volumes to fill holes in the masks.

Furthermore, in the white matter binary masks, white matter

boundary voxels were always included in the volume after having

thresholded the fractional anisotropy mask and used the median

filter. Fibers shorter than 10 mm or longer than 200 mm were

removed. Moreover, looping fibers (i.e. fibers that return to

already explored voxels) are excluded from the analysis. Proba-

bilistic local multi-direction tractography was performed using the

MRtrix package [35]. To move from a very high resolution

tractography result that connects all ,30000 voxels in the white

matter bound voxel set to the weighted connectivity matrix based

on the 82 regions of the RM, we employed the same connectivity

index as defined in [39]. This index of connectivity between two

regions is given by the sum of the weights connecting all the voxels

between region A and region B and vice versa, normalized by the

sum of the number of seeds used in each region. Thus, any non-

zero weight connecting any voxel in one parcel to any voxel in

another in either of the two directions connects the two parcels in

the final symmetric adjacency matrix [39]. Such step aims at

reconstructing the weighted 82682 connectivity matrix eliminat-

ing the effect of patch-area normalization. To create the human

connectome (HC) the symmetrized weighted matrices obtained

from each individual were averaged. Subsequently, a certain

threshold has to be applied to the probabilistic tractography

results. Thresholding constitutes a necessary step in connectome

reconstruction [21,22]. No thresholding option provides a definite

answer about the ‘‘true’’ underlying connections for the whole

brain. Consequently, the threshold was chosen in a way not to

uncover the ‘‘true’’ connections, but to render the MC and HC

comparable, which serves the purpose of the current study. Hence,

only the highest weights were selected and their number was

chosen to match the number of connections of the MC. Finally,

the HC was binarized. Hence, the MC and HC are binary

undirected matrices with the same number of nodes and

connections, corresponding to a density of 0.559. It should be

noted that the vast majority of the connections (85%) in the

average matrix were present in at least 4/5 of the individual

matrices (after thresholding at the same density). Therefore,

averaging across the participants did not bias towards connections

that have particularly high weight in a minority of the subjects. A

very good interindividual similarity was also observed with a high

correlation between the unthresholded weighted matrices of each

subject (mean: 0.86 range: 0.83–0.90).

Comparing the macaque and human connectome
We aimed at examining key topological properties of the MC

and HC. Below we introduce the various network metrics, defined

at a region-wise or whole brain level, with relevant references.

Given two matrices A and B, representing the MC and HC

respectively, we computed the intersection network X defined as:

X~A\B ð1Þ

The number of edges Lx of the intersection network denotes the

common edges/connections of the MC and HC. Lx divided by the

total number of edges L( = 1857) in each network A and B offers a

measure of similarity of the two networks. Hence, the ratio Lx/L

ranges from 0 to 1, indicating no overlap and complete overlap

respectively of the edges of networks A and B.

We next procedeed to a region-wise analysis and sought to

quantify the overlap of the connections of the assumed

homologues of the MC and HC. This was performed with the

Homologue Connectivity Similarity (HCS) metric:

HCSi A,Bð Þ~
C i Að Þ\C i Bð Þj j

C i Að Þ|C i Bð Þj j
ð2Þ

The interspecies overlap/intersection of connections of region i in

the macaque and human brain, represented by A and B

respectively, is denoted by C i Að Þ\C i Bð Þj j and the union with

C i Að Þ|C i Bð Þj j with C i denoting the set of neighbours of node i

and :j j the size of the set (see Fig. 1 B). Hence, for each region

i = 1…82 of the RM the HCSi ranges from 0 to 1 and indicates

respectively low and high interspecies connectivity similarity of the

assumed homologue region i.

Subsequently, we quantified a ‘‘second-order’’ similarity of

homologous regions, i.e. their connectivity similarity profile with

the rest of the brain. To this end, we used the matching index [40]

for A, denoting MC (the same for B denoting the HC):

MIij Að Þ~
C i Að Þ\C j Að Þ
�

�

�

�

C i Að Þ|C j Að Þ
�

�

�

�

ð3Þ

This resulted in one MI matrix for each species, with the row i

capturing the connectivity similarity of region i with all the other

brain regions of the same species. Hence, each row of each MI

matrix can be conceived as a ‘‘connectivity similarity profile’’ of a

region constructed for each species separately. In order to quantify

if the connectivity similarity profile of putative homologous regions

was preserved, we calculated the correlation between row

i = 1…82 of the MI matrices (without including the diagonal

entries of MIA, MIB,, i.e no self-similarity values). This resulted in

the Homologue Matching Index Similarity (HMIS):

HMISi MIA,MIBð Þ~r MIAi,MIBið Þ ð4Þ

with r denoting Pearson’s correlation coefficient of row i of the two

MI matrices (Fig. 1 C).

Main aspects of the topology of the RM regions in the whole

brain network, i.e. centrality and clustering, quantifying ‘‘impor-

tance’’ and ‘‘segregation’’ of regions [41], were examined by

calculating the betweenness centrality (BC) [42], eigenvector

centrality (EC) [43] and clustering coefficient (C) [44]. Segregation

in this context implies a tightly interconnected neighborhood of a

brain region, allowing ‘‘cross-talk’’ and exchange of information,

while ‘‘importance’’ refers to highly central regions that are

topologically ideal for information integration [45]. All these

metrics were calculated for each species separately by using the

formulas for binary undirected networks described in [45,46]. In

order to assess perseverance of the centrality and clustering of the

brain of the two species, Spearman’s rank correlation between the

same network metrics from the two species was computed. A

statistically significant (positive) correlation would indicate the

evolutionary perseverance of each network metric.

Lastly we examined the presence of a rich club organization,

indicating the presence of a ‘‘structural backbone’’, quantified with

the rich club coefficient (RCC) [47]:

w kð Þ~
2Ewk

Nwk Nwk{1ð Þ
ð5Þ

where E.k denotes the number of connections/edges that exist

among nodes/regions that exhibit more connections than a given

number k and N.k denotes the number of nodes/regions that

Comparative Analysis of Connectional Architecture
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have degree higher than k, i.e. exhibit more connections than a

given number k. The RCC is calculated for a range of k for a given

network and for a number of randomized matched networks in

order to estimate the RCC values expected by chance. This results

in a normalized RCC:

wnorm kð Þ~
w kð Þ

wrand kð Þ
ð6Þ

Values higher than 1 for a range of values k indicate that the

network is characterized by a rich club structure, with nodes with

degree higher than k linked with more connections than expected

by chance [47].

For each analysis, 10000 random networks, unless otherwise

stated, matching each MC and HC in number of nodes, edges and

degree distribution were created, with the use of a degree

preserving algorithm [48]. The random networks were used for

calculating p-values and z-scores of the network metrics. Thus, the

random networks are used for obtaining ‘‘null’’ values for the

metrics used. For the region-wise analysis, introducing multiple

tests, we used a conservative Bonferroni correction.

For verifying the robustness of the findings of the topology of the

original MC and HC, we performed the following control

analyses. First, we perturbed the MC and HC by rewiring the

network with a low probability, i.e. 0.1, while keeping the number

of edges, nodes and degree distribution intact. That is, a pair of

edges was swapped with 0.1 probability, thus introducing modest

alterations to the network. Secondly, connections in empty

positions were randomly and uniformly inserted. We inserted

10% of the initial number of connections, i.e. 1857*10%=186

connections. Random networks for addressing the significance of

the results in these ‘‘randomly enriched’’ MC and HC matched

the new higher density. This type of analysis simulates in a simple

way a scenario were previously absent connections appear to be

present [49]. Techniques like the aforementioned ones were used

for the examination of the robustness of features of the HC [21].

Additionally, we examined the effect of the choice of a particular

parcellation by performing all the analyses on the connectomes in

the exact same way, but assembled based on a different

parcellation scheme [3]. Lastly, due to limitations of dwMRI-

based local probabilistic tractography techniques in revealing long

controlateral connections [24,38] and the lack of complete

information on such connections in the CoCoMac database, we

performed a within hemisphere analysis for the left and right

hemisphere seperately. To this end, we constructed the MC and

HC as previously described but for each hemisphere seperately.

The hemisphere-wise MC appeared very dense (left hemi-

sphere:0.791 right hemisphere:0.792 density, compared to 0.559

for the whole brain connectome) and the HC was thresholded

accordingly. The very high density of the hemisphere-wise

connectomes poses a problem for a binary analysis. This is due

to the fact that many topological properties of the original MC and

HC will not differ from their rewired counterparts because of

inefficient ‘‘space’’ for rewiring. Taking an illustrative case for

example, the rich club analysis will reveal dense connections

between regions at increased levels of k but such strong

interconnectivity can be merely explained by the very high density

of the network and is not therefore not ‘‘surprising’’/statistically

significant (for a similar discussion but a different direction see

[50]). Therefore, we decided to adopt weighted networks and

suitable weighted versions of the aforementioned metrics. As

previously explained, the weights from the MC and HC are not

comparable. Therefore, we restricted the weighted hemisphere-

wise analysis to metrics that do not involve cross-matrix operations

(thus the intersection and HCS were not computed). The weighted

version of the HMIS involved equation (4) but operating on the

rows of a ‘‘weighted matching index’’ matrix obtained as the

cosine similarity between rows i and j of matrix A, denoting MC

(the same for B denoting the HC):

MI
weighted
ij Að Þ~

Ai
:Aj

Aik k Aj

�

�

�

�

ð7Þ

The weighted version of EC, BC and C was computed as

described in [45]. The weighted rich club can be formulated as

follows [51]:

wweighted kð Þ~
Wwk

P E
wk

i~1
W ranked

i

ð8Þ

with W.k denoting the sum of the weights of the edges connecting

nodes with degree higher than k and
P E

wk
i~1

W ranked
i denoting the

sum of the E.k first ranked (in decreasing order) edge weights in

the whole network. For each analysis, 10000 random networks

(corresponding to the ‘‘link and weight reshuffle’’ model in [51])

matching each hemisphere-wise MC and HC in number of nodes,

edges and degree distribution were created, with the use of a

degree preserving algorithm [48].

All network analysis was performed with the use of functions

from the Brain Connectivity Toolbox (https://sites.google.com/

site/bctnet/) [45] and custom scripts written in Matlab (Math-

works). The MATLAB code for the computation of the HCS is

provided (Software S1). Brain renderings were performed with the

following freely available software: Caret (http://brainvis.wustl.

edu/wiki/index.php/Caret:About) and BrainGL (http://code.

google.com/p/braingl/). For certain visualizations of the connec-

tions of the MC and HC a mean-shift edge bundling algorithm

was used [52].

Results

Fig. 2 depicts the MC and HC and their intersection. Their

intersection, i.e. the Lx/L ratio of the MC and HC was significant

(Lx/Loriginal=0.754 p,0.001, Lx/Lnull mean= 0.599 std = 0.006,

null values from 1000 random networks). Thus, the wiring of the

macaque and human brain as a whole is more similar than

expected by chance.

The region-wise analysis of the HCS revealed significant

connectivity preservation for many RM regions. Specifically, a

set of frontal, occipital and temporal regions exhibited significant

preservation of their whole brain connectivity across the species.

Mainly parietal and cingulate regions appeared to lack such

preservation (Fig. 3 A, Table 1). In sum, 51 out of 82 RM regions

exhibited significant HCS and therefore communicate with a

significantly overlapping set of brain regions in both species.

The region-wise analysis of the HMIS revealed that 45 out of 82

RM regions, mainly involving frontal, temporal, occipital regions

reached significance. Cingulate and parietal regions failed to reach

significance (Fig. 3 B, Table 1). Hence, regions reaching

significance seem to form the same ‘‘connectivity coalitions’’, i.e.

exhibit a statistically significant connectivity similarity profile with

the rest of the brain regions in macaques and humans. This in turn

can entail that their ‘‘functional coalitions’’ might also be

preserved. Conversely, certain regions fail to reach significance

and might suggest that ‘‘evolutionary rewiring’’ occurred in such a

way that they formed distinct ‘‘connectivity coalitions’’ with the

rest of the brain regions in the two species.

Comparative Analysis of Connectional Architecture
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Figure 2. Overlap of the MC and HC. A. Rendering of the MC and HC. B. Rendering of the overlap between the MC and HC. The two connectomes
exhibit a statistically significant overlap (see Results). The renderings were performed with BrainGL and a mean-shift edge bundling algorithm [52].
doi:10.1371/journal.pcbi.1003529.g002
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The HCS and HMIS results involve distinct but also

overlapping sets of regions (Fig. 3 C, Table 1). Thus, they

illustrate converging but also diverging aspects of distinct

connectional characteristics of the brain regions of the two species.

The hemisphere-wise weighted HMIS analysis revealed broadly

the same pattern with a notable difference: a subset of prefrontal

and temporal regions did not reach significance (Table S2).

Notably, even in this type of analysis cingulate regions failed to

reach significance.

Fig. 4 depicts the results of the centrality and clustering

analysis of the MC and HC. In both species, a general pattern is

discernible with regions in ‘‘association’’ cortex exhibiting the

highest centrality and regions in ‘‘primary’’ cortex exhibiting the

lowest (Fig. 4 A B). Moreover, in both species the cingulate

cortex appears as highly central (Fig. 4 A B). Additionally, little

overlap was observed between the macaque and the human

brain when taking into account the regions that are highly

central (centrality.mean+1 std of the centrality of the RM

regions) (Table S3). It should be noted however, that bilateral

posterior cingulate cortex (CCp) and left inferior parietal cortex

(PCi) exhibited high (.the mean+1 std threshold) BC and EC in

both species indicating the perseverance of the prominent

central role of these regions. However, a region wise correlation

of the BC and EC values across the species revealed a relative

high but not significant correlation (rho = 0.51, 0.52 respectively

p.0.1). This might suggest that, at a whole brain level, there is

a lack of perseverance of the topological importance of the

assumed homologues of the macaque and human brain (see also

Fig. S1 A B for scatterplots of the BC and EC values from the

two species).

The C values for both species exhibited a ‘‘reversed’’ pattern

with the centrality values: regions in ‘‘association’’ cortex

exhibiting the lowest values and regions in ‘‘primary’’ cortex

exhibiting the highest (Fig. 3 C). The C values across the species

did not reach significance either (rho= 0.46 p.0.1). Therefore,

the regions of the brains of the two species seem to exhibit different

levels of segregation (see also Fig. S1 C for scatterplots of the C

values from the two species).

The hemisphere-wise weighted anlysis of EC, BC and C led to a

comparable picture (Table S4) with no significant correlation

between these metrics in the two species.

A significant RCC highlights the presence of a rich club

organization in both the MC and HC (Fig. 5 A, see also Fig.

S3) in line with previous studies [22,53]. Importantly, our

direct comparative analysis that employed a parcellation

scheme applicable to both species demonstrates that the

regions forming a rich club exhibit a high and significant

overlap (14/20), involving regions located at the frontal,

parietal, cingulate and insular cortex (Fig. 5 B C, Table S5).

This overlap is observed for a wide range within the rich club

regime (Fig. 5 C). This indicates that not only the macaque and

human brain exhibits a rich club organization, but that this

structure constitutes an evolutionarily preserved structural

backbone involving a highly overlapping set of regions in both

species.

Since the regions constituting a rich club have a high degree,

i.e. number of connections, and the degree is positively related to

BC and EC [46], it is expected that the rich club regions will have

higher BC and EC values when compared to non-rich

club regions. We directly tested this prediction and found that

rich club regions in both the MC (defining rich club and non-rich

club regions by talking into account level k = 56 as a cutoff) and

HC (defining rich club and non-rich club regions by talking into

account level k = 55 as a cutoff) exhibit significantly higher BC

and EC values when compared to non-rich club regions (p,

0.001, permutation tests). Moreover, comparing the C values of

rich club and non-rich club regions revealed the reversed

relation: the rich club regions exhibited significantly lower C

values when compared to non-rich club regions (p,0.001,

permutation tests). Hence, the regions of the ‘‘structural

Figure 3. Renderings of the macaque and human regions exhibiting a significant HCS and HMIS index. A. HCS index B. HMIS index. In
both panels only regions reaching significance are depicted (p,0.05 Bonferroni corrected). Colour coding denotes their corresponding z-score. C.
Summary of results by colour coding the regions based on the preservation of both HMIS and HCS (red), only HCS (green), only HMIS (blue).
doi:10.1371/journal.pcbi.1003529.g003
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backbone’’ in both the MC and HC when compared with the rest

of brain regions, appears highly central, further underlying their

topological importance in mediating information across the brain.

Moreover, they appear less segregated, indicating limited

connections, and hence possible anatomical paths for ‘‘cross-

talk’’, between the regions that they connect to.

Table 1. HCS and HMIS results for the RM regions for whole brain binary network analysis.

RM acronyms Right Left

HCS HMIS HCS HMIS

z-score p-value z-score p-value z-score p-value z-score p-value

PFCoi 3.08 0.0015 2.94 0.0014 3.31 0.0007 2.61 0.0042

PFCom 3.39 0.0003 3.57 0.0001 2.41 0.0135 5.08 0.0001

PFCol 3.77 0.0002 6.29 0.0001 3.49 0.0006 6.85 0.0001

G 2.62 0.0046 3.77 0.0001 3.65 0.0002 5.45 0.0001

PFCpol 2.90 0.0040 3.30 0.0006 3.62 0.0002 5.15 0.0001

PFCvl 3.91 0.0001 4.19 0.0001 4.73 0.0001 3.79 0.0001

PFCm 4.35 0.0001 3.11 0.0007 3.73 0.0001 2.10 0.0170

PFCcl 4.86 0.0001 5.09 0.0001 4.28 0.0001 4.85 0.0001

M1 3.67 0.0004 3.86 0.0001 3.84 0.0003 3.91 0.0001

PFCdm 2.04 0.0360 1.07 0.1390 2.12 0.0310 3.36 0.0001

FEF 3.37 0.0006 3.43 0.0001 2.59 0.0071 3.75 0.0001

PFCdl 3.72 0.0003 3.82 0.0001 4.26 0.0001 3.14 0.0004

PMCvl 3.82 0.0001 5.62 0.0001 4.35 0.0001 5.76 0.0001

PMCm 3.80 0.0003 2.57 0.0040 4.04 0.0001 2.64 0.0036

PMCdl 4.26 0.0001 3.42 0.0001 5.30 0.0001 3.16 0.0007

Tcpol 3.18 0.0012 2.47 0.0066 3.66 0.0001 2.11 0.0166

TCs 4.29 0.0001 4.13 0.0001 4.26 0.0001 4.37 0.0001

TCc 5.13 0.0001 4.68 0.0001 4.45 0.0001 4.51 0.0001

TCi 4.01 0.0001 6.14 0.0001 4.41 0.0001 5.61 0.0001

TCv 3.33 0.0005 1.94 0.0242 3.12 0.0010 1.87 0.0291

A1 3.07 0.0015 2.58 0.0036 3.53 0.0006 3.26 0.0002

A2 2.89 0.0039 2.16 0.0137 3.66 0.0003 3.34 0.0001

S1 3.94 0.0001 2.57 0.0046 3.33 0.0009 3.27 0.0004

S2 4.11 0.0001 3.20 0.0007 4.05 0.0001 3.07 0.0006

PCi 4.21 0.0001 0.01 0.5032 4.03 0.0001 0.48 0.3214

PCm 2.63 0.0089 2.17 0.0136 2.91 0.0058 2.49 0.0052

PCip 3.67 0.0003 0.54 0.2936 3.24 0.0019 0.87 0.1910

PCs 1.96 0.0441 1.90 0.0284 1.54 0.1036 1.94 0.0253

V1 3.52 0.0001 3.39 0.0003 3.55 0.0002 4.48 0.0001

V2 3.47 0.0007 4.10 0.0001 4.09 0.0001 4.03 0.0001

VACv 4.27 0.0001 5.67 0.0001 4.32 0.0001 4.92 0.0001

VACd 4.32 0.0001 4.22 0.0001 3.94 0.0001 4.44 0.0001

Amyg 4.92 0.0001 4.99 0.0001 4.86 0.0001 5.60 0.0001

PHC 3.96 0.0001 1.80 0.0337 2.74 0.0058 1.70 0.0432

HC 2.92 0.0025 3.64 0.0002 2.73 0.0033 3.11 0.0009

CCs 2.38 0.0160 0.65 0.2650 2.53 0.0102 0.05 0.4836

CCr 2.14 0.0239 0.12 0.4633 2.43 0.0122 20.22 0.5884

CCp 3.26 0.0009 1.46 0.0727 3.90 0.0001 2.09 0.0164

CCa 2.27 0.0271 20.79 0.7836 1.84 0.0646 20.33 0.6341

Ia 4.65 0.0001 4.47 0.0001 4.01 0.0001 4.78 0.0001

Ip 1.34 0.1502 0.21 0.4200 1.18 0.1851 20.03 0.5145

Regions exhibiting significant HCS and HMIS values (p,0.05 Bonferroni corrected) are in bold. The p-values and z-scores of the aforementioned metrics are also
depicted.
doi:10.1371/journal.pcbi.1003529.t001
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Application of the weighted RCC to the left and right MC

and HC seperately, led to similar results (Table S6 S7). One

notable exception was the failure of the weighted rich club

analysis to reveal a statistically significant rich club in the left

HC. Hemispheric differences in network metrics have been

reported [39] and this finding could signify a less prominent

rich club structure in the left HC. However, given the high

density of the network, and consequently a rather low cutoff

used for considering connections in the HC to be taken into

account, we suggest that this finding is the consequence of an

inflated false positive rate obscuring the topology of the left

HC.

For the whole brain analysis involving binary networks, control

analysis gave rise to the following picture: The Lx/L ratio on

Figure 4. Centrality and clustering in the MC and HC. A. BC B. EC and C. C values for the regions of the two species. Despite some common
patterns, e.g. high centrality of cingulate cortex regions, these network metrics do not significantly correlate across the species (see Results).
doi:10.1371/journal.pcbi.1003529.g004
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perturbed networks revealed that despite a slight decrease, as

expected since scrambling of the networks was introduced,

from the Lx/L ratio calculated between the original MC and

HC, the Lx/L ratio remained significantly higher when

compared to values obtained from random networks (Lx/

Lperturbed mean = 0.658 std = 0.003, Lx/Lnull mean = 0.599

std = 0.006, p,0.001 null values from 1000 random networks).

The HCS, HMIS, and RCC analysis from networks derived

from the perturbation analysis revealed that the results are

robust (Fig. S2, S3). This also held true for the control analysis

of random insertion of connections. The usage of a different

parcellation scheme [3] led to significant and converging results

as the ones obtained for the RM (Lx/Loriginal= 0.712 p,0.001,

Lx/Lnull mean = 0.558 std = 0.011 null values from 1000

random networks, see also Table S8, S9). The choice of a

different parcellation scheme gave rise to significant and

comparable results, albeit with less regions reaching signifi-

cance (Table S8), something that might be attributable to the

fact that this map was not ‘‘designed’’ to be applicable in both

species. Hence, the above results conjointly underscore the

robustness and relative independence of the results from

parcellation scheme choices.

Discussion

Prefrontal, parietal and cingulate regions
Cortical expansion of the human cortex in relation to the

macaque is more prominent in prefrontal, parietal and cingulate

regions [54]. Our results suggest different degrees of perseverance

of the macroscale connectivity of these regions during primate

evolution.

An early view on the prefrontal cortex (PFC) suggests that it has

been expanded in the lineage leading to humans [1,55]. Expansion

of the human PFC relative to the macaque PFC is supported by

contemporary investigations [13] and is linked to unique human

cognitive processes [56]. Moreover, PFC connectivity changes

have also been proposed to underlie unique cognitive processes in

humans [11]. A recent review [57] as well as functional [58] and

structural [19] connectivity studies suggest comparable connec-

tions of the PFC of the two species. Additionally, quantitative

analysis has revealed similar connectivity of macaque and human

PFC regions with a small set of cortical regions (17). However,

pronounced changes are reported for the arcuate and inferior

fronto-occipital fasciculi of humans and macaques [19,59]. Our

study suggests a statistically significant preservation of distinct

Figure 5. Rich club structure in the macaque and human brain. A. The normalized RCC suggests the presence of a rich club organization in
both the human and macaque brains. For the unormalized curves see Fig. S3. The RCC obtained within the rich club regime (.1) were significantly
higher than the ones obtained from random networks matched for node, edge and degree distribution (p,0.0001). B. Network and anatomical
representation of the regions corresponding to the peak of the normalized RCC which is marked with a diamond in panel A (k = 56 for macaque and
k = 55 for human). In the network representation, green and blue nodes represent rich club and non-rich club regions at level k respectively. Only
connections involving at least one rich club region are depicted. The anatomical representation depicts the regions constituting the rich club on the
inflated fiducials of both hemispheres of the brains of the two species. The spheres represent the centre of mass of the regions. Note the
convergence of the rich club analysis to a highly overlapping set of regions in the two species. C. The observed overlap is significant within a range of
the rich club regime. The significance was established by drawing randomly from a uniform distribution a number of regions from the MC and HC
equal to the number of regions corresponding at each level k for the MC and HC separately. The procedure was repeated 10000 times and the
overlap of these randomly drawn regions was computed forming a null distribution with which the original overlap values were compared.
doi:10.1371/journal.pcbi.1003529.g005
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aspects of the wiring of several PFC regions across the species

(Fig. 3, Table S2). Hence, unique features of the humans, i.e.

‘‘higher order cognitive processes/intelligence’’ attributed to the

PFC, might not entail extensive reconfigurations of PFC

connectivity in humans when compared to macaques.

The parietal cortex in macaques and humans consists of distinct

subregions that are discernible on functional, connectional, macro-

and microstructural criteria [3,4,60]. Comparative studies reveal

similarities but also some differences of the functional and

connectional architecture of the parietal cortex subregions [60–

62]. Our whole brain quantitative analyses offer complementary

evidence by revealing that certain lateral parietal regions reach a

statistically significant connectivity pattern similarity, while the

medial parietal ones do not (Fig. 3, Table 1 S2). This could entail a

functional similarity of lateral parietal regions between the two

species and a divergence with respect to the medial ones.

The anterior cingulate cortex (CCa) exhibits extensive connec-

tions with parietal, motor, frontal, insular and limbic regions. Such

connectivity renders it suitable for bridging the motivational,

cognitive and motor domains [63]. Functional evidence in humans

and macaques pinpoint such an integrative role and involvement

in decision making [64,65]. CCa is highly central and part of the

rich club (Fig. 4 5, Table S3 S4 S5 S7) a topological structural

feature that might allow the involvement of this region in the

aforementioned functional roles. Despite that CCa is part of the

rich club in both species our results suggest a lack of preservation

of its connectivity patterns (Fig. 3, Table 1, Table S2). This in turn

might entail, alongside with potential preservance of certain

functional properties, divergent functional roles of this region in

the two species.

The posterior cingulate cortex (CCp) is a major node of the

default mode network in both species, also involved in processes

such as social cognition [66–68]. In addition, recent evidence from

a functional study in humans suggests that this region exhibits

dynamic properties subserving the integration of information from

regions of distinct large scale networks [69]. The fact that CCp is

central and part of the rich club in both species (Fig. 4 5, Table S3

S4 S5 S7) might constitute the structural basis for such integrative

property reflected in functional measurements. Consequently, we

hypothesize that such property will also hold for the macaque.

However, the CCp appears to have not retained its connectivity

with the rest of the brain (Fig. 3, Table 1 S2). Multimodal imaging

of the macaque and human brain might be used to directly address

if the aforementioned integrative functional property involving the

CCp are common in the two species or a unique property of the

human brain. Moreover, a possible rewiring of the CCp might

have resulted in the reconfiguration of the neural circuitry, which

seems also present in the macaque brain [68], underlying aspects

of social cognition in humans.

Centrality and clustering
A general pattern was discernable in both species: high BC and

EC values were observed in ‘‘association’’ cortices and low ones in

‘‘primary’’ cortices. The C values exhibited the reverse pattern

(Fig. 4, Table S4). However, none of these network metrics

appeared to persevere primate evolution, suggesting different

levels of centrality and clustering at the whole brain level (see also

Fig. S1). Neverthless, regions in the cingulate cortices appeared

highly central in both species (Fig. 4 A B, Table S4) in line with

previous findings [24,53]. Hence, cingulate cortex regions, despite

the evidence for a different ‘‘wiring’’ in the two species (Fig. 3,

Table S2), seem to have mantained their topological centrality,

relevant for information integration.

Rich clubs: A common structural backbone in the
macaque and human brain
Our analysis demonstrates the presence of a rich club

organization in both the MC and HC (Fig. 5, Table S5, S6, S7,

S9) confirming and extending previous findings [22,53]. Impor-

tantly, our comparative approach allowed us to demonstrate that

the regions forming a rich club are highly converging with a

significant overlap within the rich club regime (Fig. 5 B C, Table

S5 S7 S9). Thus, this structural backbone is not only present in

both macaques and humans, but also persevered through primate

evolution, involving a highly overlapping set of regions in the two

species. It is noteworthy, that the hemisphere-wise analysis failed

to unveil a statistically robust rich club strucure for the left HC.

We believe that this is due to an increased false positive rate.

However, a ‘‘laterality’’ might be present in the HC with respect to

rich club organization, a potentiality demanding further future

elaboration. Network analysis in the macaque [53] and the human

brain [70] revealed that the rich club connections are the most

‘‘costly’’, i.e. span long distances, and mediate traffic between

distant regions through a sequence of short-long-short range

structural pathways. Studies in the human brain indicate that

inter-regional functional interactions are modulated by connection

distance and take place within specific frequency bandwidths

[71,72]. Additionally, macaque studies suggest a frequency-specific

dialogue between two cortical regions that depends on the laminar

origin and termination of the inter-regional connections [73]. Our

comparative analysis can guide invasive techniques for the

functional examination of the rich club regions of the MC. Such

investigation is crucial for assessing if and how the aforementioned

factors co-shape the functional dialogue within rich-club and

between rich club and non-rich club regions and thus highlight the

principles that shape the flow of information through this

structural backbone. Additionally, such functional investigation

might unlock the mechanisms underlying the proposed role of

rich-club regions in multisensory integration [74]. Our compar-

ative approach helps translating such functional findings to the

human brain and develop hypothesis that could be tested with e.g.

electrocorticography. In that way, future studies could assess if

‘‘homologous rich club’’ regions exhibit comparable and/or

unique functional properties in the two species.

Lesions involving rich-club regions deteriorate the efficiency of

the whole brain network and consequently can affect multiple

cognitive domains as well as functional aspects like synchroniza-

tion of functional networks [22]. The presence of a rich club

structure involving highly overlapping regions in both MC and

HC suggest that the macaque brain might be used as a model for

e.g. studying the effects of lesions involving ‘‘homologous rich

club’’ regions. However, certain common rich club regions, for

instance CCp, lack significant interspecies connectivity similarity.

Lesions in a brain region, apart from leading to the expected

effects in regions directly connected to it, also lead to global effects

through indirect connections [75]. Thus, if the wiring of the same

lesioned regions differs, the lesion can lead to different global

effects and consequently possibly different behavioural effects. The

above conjointly, suggest that while lesioning common rich club

regions will have detrimental global effects in both species, the

nature and severity of such effects might depend on the degree of

preservation of the connectivity of the involved regions.

Factors responsible for connectivity discrepancies
between the species
Both genetic and environmental factors underlie system-level

changes, including connectivity, of the cortex of mammals [12].
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For instance, functional connectivity differences observed between

the inferior parietal lobule and anterior prefrontal cortex of

macaques and humans can be the result of different foraging styles

of the two species, dictated by different ecological factors which

entail different challenges in decision making [65]. Our results

revealed statistically significant connectivity similarities between

humans and macaques while absence thereof might suggest a

rewiring also caused by the aforementioned factors. In addition,

inaccuracies of the methods used and data incompleteness might

also give rise to connectivity discrepancies (see Limitations and

future directions). Thus, discrepancies might be attributed to

‘‘true’’ differences, methodological limitations and a mixture

thereof.

Does a statistically significant connectivity similarity
necessarily entail functional similarity?
Both empirical and computational studies suggest that the

connectivity of a region largely constrains its function [8,9]. We

have demonstrated the perseverance of the connectional patterns

of certain assumed homologues in the two species in a quantitative

way. Obviously humans and monkeys differ in certain cognitive

functions e.g. language production. Hence, one intriguing question

is the extent to which such a statistically significant perseverance of

connectivity similarity is translated to similarity of function

persevering evolution. Other factors apart from macroscale

connectivity can shape the functional role of a region, e.g. laminar

patterns of connections [76]. Consequently, it could be the case

that a statistically significant macroscale connectivity similarity of a

region is not sufficient to guarantee evolutionary preserved

functional similarity. In an analogous way, it has been demon-

strated that the presence of an evolutionary conserved network can

be accompanied by functional divergence [77]. Hence, while a

statistical perseverance of macroscale connectivity suggests func-

tional similarity, such a prediction demands explicit quantification

in future studies. The network based methods employed in the

current study in conjunction with data-driven methods for

detecting cross-species functional homologies [78] could be

adopted in future studies for addressing the degree of convergence

and divergence of connectional and functional similarity across the

brain regions of the two species.

Limitations and future directions
Certain limitations should be taken into account when

interpreting the findings of our study. First, while the expansion

model is used extensively for interspecies comparisons, evidence

suggests the presence of interspecies functional correspondences

not predicted by it [78,79]. To perform interspecies comparisons

without using the expansion model, dwMRI and/or resting–state

fMRI data collected in both species in conjunction with

sophisticated techniques like network alignment [80] can be used

for an interspecies connectivity based region-to-region match.

Moreover, connectivity based parcellation strategies can be

adopted for parcellating the cortical mantle in a data-driven

fashion [58,61] without the need for an a priori defined

parcellation scheme. This would allow addressing inter-species

differences and similarities of connectional architecture at a more

fine grained level going beyond the level of granularity currently

adopted. However, performing connectivity based whole brain

parcellation applicable to a comparative study remains challeng-

ing. Second, the MC was assembled through a meta-analysis of

tracing studies, while the HC with the aid of dwMRI. Good

correspondence exists between the structural connections as

revealed by tracers and diffusion imaging [21,81,82], but some

inconsistencies are also discernible [38]. Hence, we predict that

the usage of dwMRI for assembling the MC will lead to largely

comparable results. Moreover, different weighting schemes for

assembling the HC could also be adopted in the future [22].

Third, tractography methods have several limitations, like the

limited detailed controlateral connectivity and the relation of false-

positives and false negatives and connection distance, with longer

connection distances appearing more prone to false negatives [38].

Hence, connections between distant regions might be underrep-

resented and might lead to lack of interspecies connectivity

similarity (for a discussion see [24,83]. Future studies employing

the same modality for the estimation of connectivity in the two

species, e.g. resting-state fMRI, will complement the current

results. Forth, we currently used binary instead of weighted

connectomes for the main analysis since certain network metrics

currently employed (e.g. HCS) involve cross-matrix operations and

the weights obtained from the different methods for assembling the

MC and HC are not comparable. This restricted us from using all

the metrics for the hemisphere-wise weighted analysis. Fifth, we

compared the macroscale connectivity of the two species [20].

Apart from similarities and changes occurring at this level,

connectivity changes between the species can occur at a mesoscale,

i.e. connectivity at the laminar level [14,84]. Hence, a more

complete understanding of interspecies differences requires quan-

titative comparative studies at multiple levels. Lastly, future

incorporation of whole brain macroscale connectivity data from

more primate species, e.g. apes, along with enrichment of existing

connectivity databases and improvement of neuroinformatics tools

[49,85], will allow tracing the evolutionary trajectory of the

primate brain in more detail. To this end, network metrics recently

introduced for uncovering the structural backbone of the brain,

such as core-periphery analysis [86], could also be used as an

alternative to the metric, i.e. rich-club, currently employed.

Conclusions
We examined at the whole brain level the macroscale inter-

regional structural connections of macaques and humans. While

many similarities of the macroscale connectivity of the two species

were observed, certain discrepancies were also present. This

approach, which can be termed ‘‘comparative connectomics’’,

offers closer interspecies comparisons and brings forth novel

insights into the evolution of the connectional architecture of the

primate brain. Thus, it constitutes a translational bridge, valuable

for clinical, cognitive and systems neuroscience, between macaque

and human research.

Supporting Information

Figure S1 Scatterplots of centrality and clustering values for the

MC and HC. A. BC B. EC and C. C values. Lines represent a

least-square fit. Correlations between values obtained from the

MC and HC were not significant (see Results).

(TIF)

Figure S2 Region-wise values obtained for A. HCS and B.

HMIS. Black squares and black circles represent the values

obtained from the unscrambled and scrambled MC and HC

respectively. Boxplots represent the null values obtained from

matched random networks and depict the median, 25% and 75%

quantiles, and outliers of the null values.

(TIF)

Figure S3 Curves depicting the values for the RCC for a range

of k values for both A. MC and B. HC. Green curves and red

curves correspond to values obtained from the unscrambled and

scrambled networks respectively. Blue curves correspond to values
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obtained from matched random networks. Note that both the

green and red curves lie above the blue ones that represent the null

values for the RCC.

(TIF)

Table S1 RM acronyms and full names of the regions

constituting the whole brain parcellation used in the current

study. Each region is classified as allocortical (Allo), isocortical (Iso)

or subcortical (Sub). An assignment is also provided based on a 5

way division (F = frontal, T= temporal, P = parietal, O= occipital,

L = limbic, I = insular).

(XLS)

Table S2 Weighted HMIS results of the hemisphere wise

analysis for the RM regions. Regions exhibiting significant HMIS

values (p,0.05 FDR corrected) are in bold. The p-values and z-

scores of the aforementioned metrics are also depicted.

(XLS)

Table S3 Centrality and clustering metrics of the RM regions

for whole brain binary network analysis. Metrics in bold indicate

that the specific region exhibits a metric with values higher than

the mean+1 std (for the BC and EC) and lower than the mean+1

std (for C). The mean and std is calculated across the values

obtained for each metric for every RM region. Regions with more

than two metrics in bold are highly central and less segregated.

(XLS)

Table S4 Centrality and clustering metrics of the RM regions

for hemisphere-wise and weighted analysis. Metrics in bold

indicate that the specific region exhibits a metric with values

higher than the mean+1 std (for the BC and EC) and lower than

the mean+1 std (for C). The mean and std is calculated across the

values obtained for each metric for every RM region. Note that

values for BC and C are normalized.

(XLS)

Table S5 List of regions constituting the rich club in macaque

and human for whole brain binary network analysis. The set of

regions corresponds to the level k for which the maximum

normalized RCC was observed (k = 56 for macaque and k= 55 for

human) (see Fig. 4). Regions in bold denote rich club regions

common in both species. Coordinates for the macaque correspond

to the F99 space and for the human to MNI space. The suffixes R

and L denote the right and left hemisphere.

(XLS)

Table S6 List of regions constituting the rich club for the

hemisphere-wise and weighted analysis for the macaque (left

hemisphere). The set of regions corresponds to the level k for

which the maximum normalized RCC was observed (k = 32).

Coordinates correspond to the F99 space.

(XLS)

Table S7 List of regions constituting the rich club a for the

hemisphere-wise and weighted analysis for the macaque and

human (right hemisphere). The set of regions corresponds to the

level k for which the maximum normalized RCC was observed

(k = 33 for macaque and k= 31 for human). Regions in bold

denote rich club regions common in both species. Coordinates for

the macaque correspond to the F99 space and for the human to

MNI space.

(XLS)

Table S8 HCS and HMIS values for the BB 47 regions for

whole brain binary network analysis. Regions exhibiting signifi-

cant HCS and HMIS values (p,0.05 Bonferroni corrected) are in

bold. The p-values and z-scores of the aforementioned metrics are

also depicted.

(XLS)

Table S9 List of regions constituting the rich club in macaque

and human based on the BB 47 parcellation scheme for whole

brain binary network analysis. The set of regions corresponds to

the level k for which the maximum normalized RCC was observed

(not shown). Regions in bold denote rich club regions common in

both species. Coordinates for the macaque correspond to the F99

space and for the human to MNI space. The suffixes R and L

denote the right and left hemisphere.

(XLS)

Software S1 MATLAB code for calculating the HCS index.

(DOC)
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