000201271 001__ 201271
000201271 005__ 20240625095112.0
000201271 0247_ $$2doi$$a10.1021/ct9006579
000201271 0247_ $$2ISSN$$a1549-9618
000201271 0247_ $$2ISSN$$a1549-9626
000201271 0247_ $$2WOS$$aWOS:000279751500024
000201271 037__ $$aFZJ-2015-03576
000201271 041__ $$aEnglish
000201271 082__ $$a540
000201271 1001_ $$0P:(DE-HGF)0$$aZhang, Chao$$b0
000201271 245__ $$aMolecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength
000201271 260__ $$aWashington, DC$$bAmerican Chemical Society (ACS)$$c2010
000201271 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433835590_26778
000201271 3367_ $$2DataCite$$aOutput Types/Journal article
000201271 3367_ $$00$$2EndNote$$aJournal Article
000201271 3367_ $$2BibTeX$$aARTICLE
000201271 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201271 3367_ $$2DRIVER$$aarticle
000201271 520__ $$aThe monovalent ions Na+ and K+ and Cl− are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA−protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl− ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.
000201271 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201271 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201271 7001_ $$0P:(DE-HGF)0$$aRaugei, Simone$$b1
000201271 7001_ $$0P:(DE-HGF)0$$aEisenberg, Bob$$b2
000201271 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$eCorresponding Author
000201271 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/ct9006579$$gVol. 6, no. 7, p. 2167 - 2175$$n7$$p2167 - 2175$$tJournal of chemical theory and computation$$v6$$x1549-9626$$y2010
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.pdf$$yRestricted
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.gif?subformat=icon$$xicon$$yRestricted
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201271 8564_ $$uhttps://juser.fz-juelich.de/record/201271/files/ct9006579.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201271 909CO $$ooai:juser.fz-juelich.de:201271$$pVDB
000201271 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201271 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201271 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201271 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201271 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201271 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201271 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201271 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201271 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201271 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-Juel1)136680$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201271 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201271 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201271 920__ $$lyes
000201271 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201271 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201271 980__ $$ajournal
000201271 980__ $$aVDB
000201271 980__ $$aI:(DE-Juel1)GRS-20100316
000201271 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201271 980__ $$aUNRESTRICTED
000201271 981__ $$aI:(DE-Juel1)INM-9-20140121
000201271 981__ $$aI:(DE-Juel1)IAS-5-20120330