001     201271
005     20240625095112.0
024 7 _ |2 doi
|a 10.1021/ct9006579
024 7 _ |2 ISSN
|a 1549-9618
024 7 _ |2 ISSN
|a 1549-9626
024 7 _ |2 WOS
|a WOS:000279751500024
037 _ _ |a FZJ-2015-03576
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Zhang, Chao
|b 0
245 _ _ |a Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength
260 _ _ |a Washington, DC
|b American Chemical Society (ACS)
|c 2010
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433835590_26778
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The monovalent ions Na+ and K+ and Cl− are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA−protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl− ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.
536 _ _ |0 G:(DE-HGF)POF2-899
|a 899 - ohne Topic (POF2-899)
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Raugei, Simone
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Eisenberg, Bob
|b 2
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 3
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2166976-4
|a 10.1021/ct9006579
|g Vol. 6, no. 7, p. 2167 - 2175
|n 7
|p 2167 - 2175
|t Journal of chemical theory and computation
|v 6
|x 1549-9626
|y 2010
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201271/files/ct9006579.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201271
|p VDB
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-Juel1)136680
|a German Research School for Simulation Sciences
|b 0
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-5-20120330


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21