000201294 001__ 201294
000201294 005__ 20240625095127.0
000201294 0247_ $$2doi$$a10.1021/ct300167m
000201294 0247_ $$2ISSN$$a1549-9618
000201294 0247_ $$2ISSN$$a1549-9626
000201294 0247_ $$2WOS$$aWOS:000307478800039
000201294 0247_ $$2altmetric$$aaltmetric:821290
000201294 037__ $$aFZJ-2015-03599
000201294 082__ $$a540
000201294 1001_ $$0P:(DE-HGF)0$$aNguyen, Trung Hai$$b0
000201294 245__ $$aStructural Determinants of Cisplatin and Transplatin Binding to the Met-Rich Motif of Ctr1: A Computational Spectroscopy Approach
000201294 260__ $$aWashington, DC$$bAmerican Chemical Society (ACS)$$c2012
000201294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433838424_26778
000201294 3367_ $$2DataCite$$aOutput Types/Journal article
000201294 3367_ $$00$$2EndNote$$aJournal Article
000201294 3367_ $$2BibTeX$$aARTICLE
000201294 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201294 3367_ $$2DRIVER$$aarticle
000201294 520__ $$aThe cellular uptake of cisplatin and of other platinum-based drugs is mediated by the high-affinity copper transporter Ctr1. The eight-residue long peptide called Mets7 (MTGMKGMS) mimics one of extracellular methionine (Met)-rich motifs of Ctr1. It is an excellent model for investigating the interaction of platinum drugs with Ctr1 under in vitro and in vivo conditions. Some of us have shown that (i) Cisplatin loses all of its ligands upon reaction with Mets7 and the metal ion binds to the three Met residues and completes its coordination shell with a fourth ligand that can be a chloride or a water/hydroxyl oxygen. (ii) Transplatin loses only the chlorido ligands, which are replaced by Met residues. Here, we provide information on the structural determinants of cisplatin/Mets7 and transplatin/Mets7 adducts by computational methods. The predictions are validated against EXAFS, NMR, and CD spectra. While EXAFS gives information restricted to the metal coordination shell, NMR provides information extended to residue atoms around the coordination shell, and finally, CD provides information about the overall conformation of the peptide. This allows us to elucidate the different reaction modes of cisplatin and transplatin toward the peptide, as well as to propose the platinated peptides [PtX]+−(M*TGM*KGM*S) (X = Cl−, OH− ) and trans[Pt(NH3)2]2+−(M*TGM*KGMS) as the most relevant species occurring in water solution.
000201294 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201294 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201294 7001_ $$0P:(DE-HGF)0$$aArnesano, Fabio$$b1
000201294 7001_ $$0P:(DE-HGF)0$$aScintilla, Simone$$b2
000201294 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b3$$ufzj
000201294 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b4$$ufzj
000201294 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding Author$$ufzj
000201294 7001_ $$0P:(DE-HGF)0$$aNatile, Giovanni$$b6$$eCorresponding Author
000201294 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/ct300167m$$gVol. 8, no. 8, p. 2912 - 2920$$n8$$p2912 - 2920$$tJournal of chemical theory and computation$$v8$$x1549-9626$$y2012
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.pdf$$yRestricted
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.gif?subformat=icon$$xicon$$yRestricted
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201294 8564_ $$uhttps://juser.fz-juelich.de/record/201294/files/ct300167m.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201294 909CO $$ooai:juser.fz-juelich.de:201294$$pVDB
000201294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201294 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201294 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201294 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201294 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201294 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201294 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201294 920__ $$lyes
000201294 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201294 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201294 980__ $$ajournal
000201294 980__ $$aVDB
000201294 980__ $$aI:(DE-Juel1)GRS-20100316
000201294 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201294 980__ $$aUNRESTRICTED
000201294 981__ $$aI:(DE-Juel1)INM-9-20140121
000201294 981__ $$aI:(DE-Juel1)IAS-5-20120330