000201297 001__ 201297
000201297 005__ 20240625085657.0
000201297 0247_ $$2doi$$a10.1073/pnas.1121227109
000201297 0247_ $$2ISSN$$a0027-8424
000201297 0247_ $$2ISSN$$a1091-6490
000201297 0247_ $$2WOS$$aWOS:000306061400025
000201297 0247_ $$2altmetric$$aaltmetric:786275
000201297 0247_ $$2pmid$$apmid:22675120
000201297 037__ $$aFZJ-2015-03602
000201297 041__ $$aEnglish
000201297 082__ $$a000
000201297 1001_ $$0P:(DE-HGF)0$$aZhang, C.$$b0
000201297 245__ $$aWater at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion
000201297 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2012
000201297 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433837726_26778
000201297 3367_ $$2DataCite$$aOutput Types/Journal article
000201297 3367_ $$00$$2EndNote$$aJournal Article
000201297 3367_ $$2BibTeX$$aARTICLE
000201297 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201297 3367_ $$2DRIVER$$aarticle
000201297 520__ $$aFast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water∕n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile adopts the shape of a well at the interface, having a width oftwo water molecules and a depth of 6 +/- 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, 5.7 +/- 0.7 × 10^−5 cm^2 s^−1. Conceivably, these are the protons that allow for fast diffusion along biological membranes.
000201297 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201297 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201297 7001_ $$0P:(DE-HGF)0$$aKnyazev, D. G.$$b1
000201297 7001_ $$0P:(DE-HGF)0$$aVereshaga, Y. A.$$b2
000201297 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, E.$$b3$$ufzj
000201297 7001_ $$0P:(DE-HGF)0$$aNguyen, T. H.$$b4
000201297 7001_ $$0P:(DE-Juel1)145614$$aCarloni, P.$$b5$$eCorresponding Author$$ufzj
000201297 7001_ $$0P:(DE-HGF)0$$aPohl, P.$$b6
000201297 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1121227109$$gVol. 109, no. 25, p. 9744 - 9749$$n25$$p9744 - 9749$$tProceedings of the National Academy of Sciences of the United States of America$$v109$$x1091-6490$$y2012
000201297 909CO $$ooai:juser.fz-juelich.de:201297$$pVDB
000201297 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201297 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201297 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201297 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201297 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201297 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201297 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201297 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201297 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201297 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000201297 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201297 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201297 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201297 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-Juel1)136680$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201297 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b2$$kGRS
000201297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201297 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b4$$kGRS
000201297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201297 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201297 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201297 920__ $$lyes
000201297 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201297 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201297 980__ $$ajournal
000201297 980__ $$aVDB
000201297 980__ $$aI:(DE-Juel1)GRS-20100316
000201297 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201297 980__ $$aUNRESTRICTED
000201297 981__ $$aI:(DE-Juel1)INM-9-20140121
000201297 981__ $$aI:(DE-Juel1)IAS-5-20120330