000201299 001__ 201299
000201299 005__ 20240625095113.0
000201299 0247_ $$2doi$$a10.1007/s10822-012-9571-0
000201299 0247_ $$2ISSN$$a0920-654X
000201299 0247_ $$2ISSN$$a1573-4951
000201299 0247_ $$2WOS$$aWOS:000303882200005
000201299 0247_ $$2altmetric$$aaltmetric:721587
000201299 0247_ $$2pmid$$apmid:22532071
000201299 037__ $$aFZJ-2015-03604
000201299 041__ $$aEnglish
000201299 082__ $$a570
000201299 1001_ $$0P:(DE-HGF)0$$aSgrignani, Jacopo$$b0$$eCorresponding Author
000201299 245__ $$aOn the active site of mononuclear B1 metallo β-lactamases: a computational study
000201299 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2012
000201299 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434006503_12155
000201299 3367_ $$2DataCite$$aOutput Types/Journal article
000201299 3367_ $$00$$2EndNote$$aJournal Article
000201299 3367_ $$2BibTeX$$aARTICLE
000201299 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201299 3367_ $$2DRIVER$$aarticle
000201299 520__ $$aMetallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called ‘3H’ and ‘DCH’ sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum–classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the εεδ and δεδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.
000201299 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201299 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201299 7001_ $$0P:(DE-HGF)0$$aMagistrato, Alessandra$$b1$$eCorresponding Author
000201299 7001_ $$0P:(DE-HGF)0$$aDal Peraro, Matteo$$b2
000201299 7001_ $$0P:(DE-HGF)0$$aVila, Alejandro J.$$b3
000201299 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
000201299 7001_ $$0P:(DE-HGF)0$$aPierattelli, Roberta$$b5$$eCorresponding Author
000201299 773__ $$0PERI:(DE-600)2008643-X$$a10.1007/s10822-012-9571-0$$gVol. 26, no. 4, p. 425 - 435$$n4$$p425 - 435$$tJournal of computer aided molecular design$$v26$$x1573-4951$$y2012
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.pdf$$yRestricted
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.gif?subformat=icon$$xicon$$yRestricted
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201299 8564_ $$uhttps://juser.fz-juelich.de/record/201299/files/art_10.1007_s10822-012-9571-0.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201299 909CO $$ooai:juser.fz-juelich.de:201299$$pVDB
000201299 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201299 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201299 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201299 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201299 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201299 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201299 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201299 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201299 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201299 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201299 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201299 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201299 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201299 920__ $$lyes
000201299 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201299 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201299 980__ $$ajournal
000201299 980__ $$aVDB
000201299 980__ $$aI:(DE-Juel1)GRS-20100316
000201299 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201299 980__ $$aUNRESTRICTED
000201299 981__ $$aI:(DE-Juel1)INM-9-20140121
000201299 981__ $$aI:(DE-Juel1)IAS-5-20120330