000201309 001__ 201309
000201309 005__ 20240625095114.0
000201309 0247_ $$2doi$$a10.1371/journal.pone.0064675
000201309 0247_ $$2Handle$$a2128/8787
000201309 0247_ $$2WOS$$aWOS:000319799900079
000201309 0247_ $$2altmetric$$aaltmetric:1533434
000201309 0247_ $$2pmid$$apmid:23741366
000201309 037__ $$aFZJ-2015-03614
000201309 041__ $$aEnglish
000201309 082__ $$a500
000201309 1001_ $$0P:(DE-HGF)0$$aMarchiori, Alessandro$$b0
000201309 245__ $$aCoarse-Grained/Molecular Mechanics of the TAS2R38 Bitter Taste Receptor: Experimentally-Validated Detailed Structural Prediction of Agonist Binding
000201309 260__ $$aLawrence, Kan.$$bPLoS$$c2013
000201309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434027128_12150
000201309 3367_ $$2DataCite$$aOutput Types/Journal article
000201309 3367_ $$00$$2EndNote$$aJournal Article
000201309 3367_ $$2BibTeX$$aARTICLE
000201309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201309 3367_ $$2DRIVER$$aarticle
000201309 520__ $$aBitter molecules in humans are detected by ~25 G protein-coupled receptors (GPCRs). The lack of atomic resolution structure for any of them is complicating an in depth understanding of the molecular mechanisms underlying bitter taste perception. Here, we investigate the molecular determinants of the interaction of the TAS2R38 bitter taste receptor with its agonists phenylthiocarbamide (PTC) and propylthiouracil (PROP). We use the recently developed hybrid Molecular Mechanics/Coarse Grained (MM/CG) method tailored specifically for GPCRs. The method, through an extensive exploration of the conformational space in the binding pocket, allows the identification of several residues important for agonist binding that would have been very difficult to capture from the standard bioinformatics/docking approach. Our calculations suggest that both agonists bind to Asn103, Phe197, Phe264 and Trp201, whilst they do not interact with the so-called extra cellular loop 2, involved in cis-retinal binding in the GPCR rhodopsin. These predictions are consistent with data sets based on more than 20 site-directed mutagenesis and functional calcium imaging experiments of TAS2R38. The method could be readily used for other GPCRs for which experimental information is currently lacking
000201309 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201309 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201309 7001_ $$0P:(DE-HGF)0$$aCapece, Luciana$$b1
000201309 7001_ $$0P:(DE-HGF)0$$aGiorgetti, Alejandro$$b2
000201309 7001_ $$0P:(DE-HGF)0$$aGasparini, Paolo$$b3
000201309 7001_ $$0P:(DE-HGF)0$$aBehrens, Maik$$b4
000201309 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding Author$$ufzj
000201309 7001_ $$0P:(DE-HGF)0$$aMeyerhof, Wolfgang$$b6$$eCorresponding Author
000201309 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0064675$$gVol. 8, no. 5, p. e64675 -$$n5$$pe64675 -$$tPLoS one$$v8$$x1932-6203$$y2013
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.pdf$$yOpenAccess
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.gif?subformat=icon$$xicon$$yOpenAccess
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201309 8564_ $$uhttps://juser.fz-juelich.de/record/201309/files/journal.pone.0064675.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201309 909CO $$ooai:juser.fz-juelich.de:201309$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201309 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201309 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b1$$kGRS
000201309 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b2$$kGRS
000201309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201309 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201309 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201309 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000201309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201309 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201309 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000201309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201309 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201309 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201309 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201309 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201309 920__ $$lyes
000201309 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201309 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201309 9801_ $$aFullTexts
000201309 980__ $$ajournal
000201309 980__ $$aVDB
000201309 980__ $$aFullTexts
000201309 980__ $$aUNRESTRICTED
000201309 980__ $$aI:(DE-Juel1)GRS-20100316
000201309 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201309 981__ $$aI:(DE-Juel1)INM-9-20140121
000201309 981__ $$aI:(DE-Juel1)IAS-5-20120330