000201310 001__ 201310
000201310 005__ 20240625095114.0
000201310 0247_ $$2doi$$a10.1021/bi4001744
000201310 0247_ $$2ISSN$$a0006-2960
000201310 0247_ $$2ISSN$$a1520-4995
000201310 0247_ $$2WOS$$aWOS:000318333100010
000201310 037__ $$aFZJ-2015-03615
000201310 082__ $$a570
000201310 1001_ $$0P:(DE-HGF)0$$aMusiani, Francesco$$b0
000201310 245__ $$aConformational Fluctuations of UreG, an Intrinsically Disordered Enzyme
000201310 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2013
000201310 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433940074_12152
000201310 3367_ $$2DataCite$$aOutput Types/Journal article
000201310 3367_ $$00$$2EndNote$$aJournal Article
000201310 3367_ $$2BibTeX$$aARTICLE
000201310 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201310 3367_ $$2DRIVER$$aarticle
000201310 520__ $$aUreG proteins are small GTP binding (G) proteins that catalyze the hydrolysis of GTP necessary for the maturation of urease, a virulence factor in bacterial pathogenesis. UreG proteins are the first documented cases of intrinsically disordered enzymes. The comprehension of the dynamics of folding−unfolding events occurring in this protein could shed light on the enzymatic mechanism of UreG. Here, we used the recently developed replica exchange with solute tempering (REST2) computational methodology to explore the conformational space of UreG from Helicobacter pylori (HpUreG) and to identify its structural fluctuations. The same simulation and analysis protocol has been applied to HypB from Methanocaldococcus jannaschii (MjHypB), which is closely related to UreG in both sequence and function, even though it is not intrinsically disordered. A comparison of the two systems reveals that both HpUreG and MjHypB feature a substantial rigidity of the protein regions involved in catalysis, justifying its residual catalytic activity. On the other hand, HpUreG tends to unfold more than MjHypB in portions involved in protein−protein interactions with metallochaperones necessary for the formation of multiprotein complexes known to be involved in urease activation.
000201310 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201310 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201310 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b1$$ufzj
000201310 7001_ $$0P:(DE-HGF)0$$aMicheletti, Cristian$$b2
000201310 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$eCorresponding Author$$ufzj
000201310 7001_ $$0P:(DE-HGF)0$$aCiurli, Stefano$$b4$$eCorresponding Author
000201310 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/bi4001744$$gVol. 52, no. 17, p. 2949 - 2954$$n17$$p2949 - 2954$$tBiochemistry$$v52$$x1520-4995$$y2013
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.pdf$$yRestricted
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.gif?subformat=icon$$xicon$$yRestricted
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201310 8564_ $$uhttps://juser.fz-juelich.de/record/201310/files/bi4001744.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201310 909CO $$ooai:juser.fz-juelich.de:201310$$pVDB
000201310 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201310 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201310 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201310 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201310 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201310 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201310 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201310 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201310 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201310 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201310 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201310 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201310 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201310 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201310 920__ $$lyes
000201310 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201310 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201310 980__ $$ajournal
000201310 980__ $$aVDB
000201310 980__ $$aI:(DE-Juel1)GRS-20100316
000201310 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201310 980__ $$aUNRESTRICTED
000201310 981__ $$aI:(DE-Juel1)INM-9-20140121
000201310 981__ $$aI:(DE-Juel1)IAS-5-20120330